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The kinetic theory of density and velocity fluctuations below and above the first 
convective instability in a B~nard cell is presented. Results are given in a form 
valid for all fluid densities. In particular, the singular behavior near the instabil- 
ity point is computed and a detailed comparison with that near a critical point is 
made. Mode coupling effects, involving the viscous and the heat mode, that 
determine the singular behavior of the thermal conductivity near the critical 
point, are also responsible for the singular behavior of the pair correlation 
function and in particular the density-density correlation function near the 
instability point, The anomalous density fluctuations could be measured directly 
by microwave scattering experiments, while the velocity fluctuation could be 
measured by laser Doppler velocimetry. 

KEY WORDS: Kinetic theory; Rayleigh-Benard celt; mode coupling; cor- 
relation functions. 

1. INTRODUCTION 

In three previous papers the density fluctuations in a fluid in a nonequilib- 
rium stationary state in the presence of a fixed temperature gradient were 
studied. In particular, the changes in the light scattering from that by a 
fluid in thermal equilibrium were obtained. (1-4) In all this work the fluid 
was always in a stable stationary state with no convection present. In this 
paper we consider the density fluctuations in a fluid in a Rayleigh-Brnard 
cell near its first convective instability. In that case the fluid is heated from 
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below and the presence of a gravitational field and boundary conditions at 
the wall of the cell have to be explicitly taken into account. The noncon- 
vecting state considered previously is then potentially unstable due to the 
thermal expansion of the fluid near its lower (heated) boundary. (5) For this 
nonconvecting state to become unstable the buoyancy force, which is 
proportional to aT-glVTI, must overcome the dissipative forces, which are 
proportional to pD r. Here g is the magnitude of the gravitational accelera- 
tion g, [V T I is the absolute value of the temperature gradient V T, which is 
taken to be in the direction of g, a T = - ( O p / / O T ) p / / p  is the coefficient of 
thermal expansion, p is the mass density, u the kinematic viscosity, and D T 

is the thermal diffusivity. The dimensionless parameter characterizing these 
opposing forces is the Rayleigh number R = aTg[V T I d 4 / u D T ,  where d is 
the distance between the parallel plates that bound the fluid in the direction 
of the gravitational force and the temperature gradient. 

This instability is demonstrated mathematically by showing that one of 
the eigenvalues, which describes the decay of an arbitrary perturbation of 
this steady state, goes to zero for some value of R so that then perturbations 
do not decay. The minimum value of R for which this occurs is known as 
the critical Rayleigh number and is denoted by R c. We remark that for 
R /> Rc there is macroscopic fluid motion which is for the case we consider 
here, of a fluid only bounded in the direction of g (and V T), typically in 
the form of two-dimensional rolls. (5) 

We have made our calculations in two independent ways: using kinetic 
theory and hydrodynamic equations. The advantage of the latter is that its 
results apply to fluids of all densities, while those of the former are 
restricted to low-density gases. Although we could present our derivations 
on the basis of hydrodynamic equations, we will use kinetic theory. Not 
only is this the first time, we believe, that a hydrodynamic instability is 
treated in the context of kinetic theory, but also some of the connections we 
want to make are more clearly exposed in such a presentation. In addition, 
we have explicitly checked that a number of neglected terms are indeed of 
higher order in the density. Kinetic theory is, therefore, better founded than 
the more general hydrodynamic theory that is based on rather formal 
derivations (cf. Refs. 1, 4). We shall use kinetic theory to calculate the 
long-wavelength part of both the equal and unequal time density-density 
correlation functions (ddcfs)just below and above the convective instability 
at R = R c. We will, however, quote our final results in a form valid for 
arbitrary densities as would follow from a hydrodynamic treatment. 

For both R ~ R c and R ~> R C we shall show that the unequal time 
correlation functions exhibit critical slowing down similar to that found 
near a gas-liquid critical point and that in addition, the equal time 
correlation functions become singular as [R - R~[--~ 0. The singular parts of 
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the equal time correlation functions are due to mode-coupling contribu- 
tions to the nonequilibrium pair correlation function that have been dis- 
cussed before away from the instability point. (3'4) In fact, in Refs. 3, 4 it 
was shown that even when the fluid is not close to a hydrodynamic 
instability similar mode-coupling effects produce a correlation length of the 
density fluctuations of macroscopic size. Here we show that when R 
approaches R C, the length of these correlations in the directions perpendicu- 
lar to 17 T and g increases and becomes much larger than d, the size of the 
cell in the direction of 17 T and g. We remark that in this paper by mode 
coupling we mean contributions to the pair correlation function that 
involve the sum of two hydrodynamic eigenvalues or the product of two 
hydrodynamic eigenfunctions (cf. Sections 4 and 6). 

Some of our results--especially for R ~< Re--have been found before 
by others using fluctuating hydrodynamics. The first to compute hydro- 
dynamic fluctuations near the convective instability were Zaitsev and 
Shliomis. (6) Generalizing the linear fluctuating hydrodynamic equations of 
Landau and Lifshitz for fluctuations in fluids around total equilibrium to 
fluids in nonequilibrium steady states, they computed both the equal and 
unequal time temperature-temperature correlation functions for R < Re. 
Thus, using fluctuating Navier-Stokes equations linearized about a steady 
state, they found that these correlation functions exhibit critical slowing 
down as R ~ R~ and that the equal time correlation functions become long 
ranged. These results are of a similar general form as our Eq. (4.14); 
however, the correlation length they find differs from ours, given by Eq. 
(C.8), by a factor of x/3-. The next authors to compute correlation functions 
near the convective instability were Lesnikov and Fisher. (7) They attempted 
to compute the equal and unequal time ddcfs for R < R~, i.e., the light 
scattering, by extending the Onsager regression hypothesis to nonequilib- 
rium steady states for the calculation of the time-dependent correlation 
functions and then computing the equal time correlation functions by 
simply taking the equilibrium results with position-dependent thermody- 
namic parameters. Although, as has been discussed elsewhere, (1-4) the 
Onsager regression hypothesis can indeed be straightforwardly extended to 
nonequilibrium steady states, the correct equal time correlation functions 
cannot be simply obtained from the equilibrium equal time correlation 
functions. The result of this incorrect extension of equilibrium results is that 
the contributions of the nonequilibrium part of the pair correlation func- 
tion to the equal time correlation functions are neglected. As a consequence 
their equal time correlation functions do not become long ranged as R 
approaches R C. Therefore, the criticism of Lesnikov and Fisher on the 
results of Zaitsev and Shliomis, who did find long-ranged equal time 
correlation functions, is not justified. Following Lesnikov and Fisher, 
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Lekkerkerker and Boon (8) computed the light scattering, i.e., the ddcfs near 
the convective instability for R < R c. They also used the Onsager regres- 
sion hypothesis to compute the time-dependent correlation function and 
found critical slowing down. They did not, however, specify the equal time 
ddcf and in addition assumed that the equal time entropy-momentum 
correlation function is zero. Although the latter is true in equilibrium due to 
symmetry, in nonequilibrium it is not. As a consequence, the form of their 
time-dependent correlation functions is not correct, i.e., what corresponds 
to the second term in Eq. (4.9a) is absent in the results of their calculations, 
since this term is proportional to the equal time entropy-momentum 
correlation function. 

Finally, Graham, (9) Graham and Pleiner, O~ and Swift and Hohen- 
berg (11) used nonlinear fluctuating hydrodynamics to examine corrections 
to the results of Zaitsev and Shliomis (6) very close to R = R c. They found 
that these correlations only become appreciable in an experimentally inac- 
cessible region near Re. This implied that, unlike near the gas-liquid critical 
point, fluctuation renormalization of the hydrodynamic eigenvalues (i.e., of 
the transport coefficients) can be neglected and a linear theory can be used. 
These points are verified on the basis of kinetic theory in Appendices B and 
C of this paper. Apart from a detailed discussion of the behavior of density 
fluctuations for R ~> Re, the main result of this paper that is not evident 
from previous papers is that essentially the same mode-coupling effects that 
are responsible for the singular behavior of the thermal conductivity near 
the gas-liquid critical point are also responsible for the anomalous behavior 
of the pair correlation function and the ddcfs near the instability point. 
Although both singularities--those near the critical point and near the 
instability point--are related to the behavior of the pair correlation func- 
tion, it is the dynamical nonequilibrium contribution to the pair correlation 
function, proportional to the gradient of the temperature, that causes the 
singularity near the instability point, while static contributions, related to 
the infinite compressibility, lead to the singularity near the critical point. 

The quantities we compute are all related to the microscopic density 
f ( l t )  in/~ space: 

N 

f ( l t )  = ~ 8(1 - x i ( l ) )  (1.1) 
i ~ l  

In Eq. (1.1) 1 -- (R1,V1) is a particular point in/x space, xi ( t )  = (r,.(t),v;(t)) 
is the phase of particle i at time t, and the sum is over the number of 
particles, N, in a volume ft. 

In the course of our explicit calculations, we will consider fluids that 
are of finite extent in only one of the three spatial directions and infinite in 
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the remaining two. For this case the limit N, f~ --> oo, N / ~  = n is to be used. 
If we define a density fluctuation in # space by 

By(1 t) = f (  1 t) - ( f (  1 t))ss (1.2) 

where ( )ss denotes a steady state ensemble average, then it is the aim of 
this paper to calculate for a dilute gas, the unequal time correlation 
function C(1 t t2) 

C(l t [  2) = (rf(1 t)df(20)~s (1.3) 

and the pair correlation function 

G2(12 ) = f2(12) - f l(1)f ,(2) (1.4) 

Here f2(12)= (~Uv~j6(1- X;)6(2- Xj))~ is the two-particle distribution 
function and f 1(1 ) = (~U= 18(1 _ Xi))ss is the one-particle distribution func- 
tion. C( l t [2)  and G2(12 ) describe the microscopic correlations in # space 
that exist in a gas, in particular also those near R = Rc. Further, from these 
two quantities, the density-density equal and unequal time correlation 
functions that are typically measured in scattering experiments can be 
easily determined. For example, one only has to multiply C ( l t l 2  ) by 
fdVl fdV2 m2 to obtain (dp(Rl,t)dp(R2,0))~ where m is the mass of 
particles and d0(R) = o(R) - (o(R))~ the density fluctuation at R, with o(R) 
the microscopic mass density at R: 

N 

0(R) = ~ md(R - r,) (1.5) 
i = 1  

The central quantities needed for our calculations are the long- 
wavelength eigenmodes of a linear kinetic operator, that will be defined in 
Section 2 [cf. Eqs. (2.4) and (2.17c)]. The relevance of these modes follows 
from the fact that the eigenvalue which goes to zero near a hydrodynamic 
instability is a long-wavelength mode. For an equilibrium fluid in infinite 
space the long-wavelength spectrum or hydrodynamic modes are well 
known. (12) There are five of these modes: a heat mode (H), two sound 
modes (o = __. 1), and two viscous modes (Pl,2). Here we compute the 
nonequilibrium extension of some of these modes for fluids which are in a 
nonequilibrium steady state in the presence of gravity and of walls. 

The plan of this paper is as follows. In the first part of Section 2, we 
indicate how the equations of Ernst and Cohen, O3) Krommes and Ober- 
man, (14) and Ernst and Dorfman (15) for the unequal and equal time 
correlation functions can be modified to include both the effects of walls 
which surround the fluid and a constant gravitational force. The effects of 
the walls are taken into account using the wall-particle collision operator of 
Dorfman and van Beijeren. (16) The resulting basic kinetic equations for 
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C(lt[2) and G2(12 ) are linear and involve a linear kinetic operator the 
eigenvalue spectrum of which is of central interest in this paper. In the 
second part of Section 2 we derive the equations from which both the right 
and left hydrodynamic eigenmodes of this operator for gases in a nonequi- 
librium steady state can be derived. In Section 3 the relevant hydrodynamic 
modes for R < R c are obtained explicitly. In Section 4 the results of Section 
3 are used to calculate the long-wavelength contributions to both the pair 
correlation function, G2(12 ), and the time-dependent correlation function, 
C(1 t[2), for R < Re. In particular, we concentrate on the contributions to 
these correlation functions that become singular as R approaches R C from 
below. In Section 5 and Appendix A the relevant hydrodynamic modes for 
R ~> Rc will be obtained explicitly. In Section 6 these modes will be used to 
calculate the long-wavelength contributions to G2(12) and C(lt[2) for 
R ~> R~. In Section 7 the results of this paper are reviewed. In particular the 
singular behavior found here near the hydrodynamic instability is com- 
pared with that found near the critical point for the gas-liquid phase 
transition. Also some remarks about experimental verification of some of 
the new results are made. In Appendix B we shall show that as R 
approaches R c thermodynamic fluxes and transport coefficients, in particu- 
lar the heat flux and the thermal conductivity, become renormalized and 
singular due to correlated collision sequences (ring events) between the 
particles. In Appendix C the consequences of this on the theory presented 
in this paper are shown to be negligible. 

Some of the main results quoted in this paper have been published in a 
short previous publication. (17) 

2. BASIC EQUATIONS AND H Y D R O D Y N A M I C  E IGENMODES 

In this section we first give the basic equations for the unequal and 
equal time correlation functions in/~ space that determine the correspond- 
hag correlation functions, in particular the density-density correlation func- 
tions, in ordinary space. As mentioned in Section 1, in these equations a 
basic linear kinetic operator occurs, certain eigenmodes of which are of 
particular importance for our calculations. The second part of this section 
is therefore devoted to developing a general method to determine the 
hydrodynamic modes of this operator for a gas in a nonequilibrium steady 
state in a finite container. In the following sections we shall use this method 
to determine approximate hydrodynamic modes below and above the 
convective instability and use them to calculate the singular behavior of the 
correlation functions introduced in the first part of this section near the 
instability point R = R c. 
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2.1. Basic Equat ions 

On the basis of the methods developed by Ernst and Cohen, (13) 
Krommes and Oberman, (14) Ernst and Dorfman, (15) and Dorfman and van 
Beijeren (16) kinetic equations for the correlation functions of a dilute gas in 
a nonequilibrium steady state in the presence of walls and external forces 
can be derived without difficulty. (18) The unequal time correlation function 
C(l t  [2) [cf. Eq. (1.3)] satisfies for t > 0, the equation 

[a, + Zs~(1)]C(lt[2 ) = Tw(1)f( l t [2  ) (2.1a) 

Equation (2.1a) is to be solved in terms of the equal time correlation 
function: 

C(l t=O12)-C( l12)=6(1-2) f~(1)+G2(12  ) (2.1b) 

In Eq. (2.1b)fl(1) is defined below Eq. (1.4) and G2(12 ) by Eq. (1.4). For 
dilute gases in a steady state in the presence of gravity and walls fl(1) 
satisfies the extended nonlinear Boltzmann equational6): 

V 1 �9 ~ + g.  ~ fl(1) = d2T(12)fl(1)fl(2 ) + Tw(1)fl(1 ) (2.1c) 

where G2(12 ) satisfies the equation 

[Lss(1) + L~s(2 ) - Tw(1 ) - L(2) ]G2(12)= 7~(12)f1(1)f,(2) (2.1d) 

In Eq. (2.1) Ls~(1 ) is a linear kinetic operator, obtained by linearizing the 
nonlinear operator appearing in Eq. (2. l c) around fl :  

. o f d 3  7~(13)(1 + e13)fl(3) (2.2a) L sfl) = Vl + g" 

with 7~(13) the point binary collision operator~13): 

7~(13) 6(R 1 Ra)T0(13 ) 6(R1 2~ a . . . .  R3)f0 dcs  dbblV,- V3[(b~- 1) 

(2.2b) 

where (b, ~) are, respectively, the impact parameter and azimuthal angle of 
the binary collision between two particles with velocities V1, V 3, a is the 
range of the interparticle forces, and b, is an operator that replaces the 
velocities V 1 and V3 by the velocities of the restituting collision, V~ and V~. 
Further, PI3 in Eq. (2.2a) is a permutation operator that permutes particle 
indices 1 and 3. Tw(1) in Eq. (2.1) is a wall-particle collision operator that 
takes into account the change in the distribution functions due to collisions 
of the particles with the walls. Under quite general conditions it has been 
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shown (16) that when TwO ) acts on a function h(1) the result is given by 

Tw(1)h(1) = f dw, (R ,  - 

• { o(v,.  )fdv'l o(-  vi.  Iv; �9 V])h(R1, V]) 

- 0 ( - V l ' / ~ ) l V l "  ,~lh(1)} (2.2c) 

where R w denotes the position of a point on the walls, fdw indicates an 
integral over the wall surfaces, O(x) = 1 for x > 0 and is zero otherwise, ~ is 
a unit vector normal to the wall pointing into the fluid, and K(V,, V'I) is a 
scattering kernel which specifies the interaction mechanism between the 
walls and the gas particles. An explicit example of K(V 1 , V'~) will be given 
below. 

To determine the long-wavelength contributions to the correlation 
functions of the fluctuations, the average state, around which the properties 
of the fluctuations are studied, i.e., f l ,  is needed first. For this will 
determine the operator Lss(1), Eq. (2.2a), that occurs in Eqs. (2.1a) and 
(2.1d) for C(l t )  and G2(12 ), respectively, as well as the right-hand side of 
Eq. (2.1d). We remark that, unlike in equilibrium, G2(12) possesses non- 
equilibrium contributions that are of the same order in the density as fl(1), 
so that G2(12) cannot be neglected in Eqs. (2.1b) and (2.1d). (1-4) We 
proceed now as follows. 

First the Chapman-Enskog solution method is used to solve Eq. (2.1 c) 
for fl(1), which is then obtained as an expansion in terms of a uniformity 
parameter /x = I/L v with l the mean free path of the particles between 
successive collisions and L v a macroscopic gradient length on the order of 
T/IV TI. 3 Using that fl(1) vanishes outside the fluid volume, the first two 
terms in this expansion are straightforwardly found to be (16) 

f,(1) ~ fCH-E(1) = W(R1)[Jl(1 ) + f(1)(1) + O(/~2)] (2.3a) 

Here W(RI) is a characteristic function that vanishes when R 1 is outside the 
fluid volume ~: 

W ( R 1 ) = I  if R 1E 

= 0 otherwise (2.3b) 

In Eq. (2.3a)j}(1) is the local Maxwellian distribution function given by 

[ m ] [ m C 2 ( R l ) ]  
3/2exp - (2.3c) 

)~(1) -- n(R,) 2rrkBT(R,) 2k~T(R,) 

3 For a gas at STP, l ~ 1 0  -5  cm and T ~ 3 0 0  K. Using this and that a typical value of IV T I in 
a B~nard cell is I V T [ ~ 5 0  K / c m  y ie lds /z~10  -6. 



Kinetic Theory of Fluctuations near a Convective Instability 647 

where n(Rx) is the local number density, k B is Boltzmann's constant, m is 
the mass of the particles, and Ct(Rt) = V l - u(Rt) is the peculiar velocity 
with u(R1) the local flow velocity at the point R 1 . Further, fv(0(1) is the 
correction of first order in the gradients to ft(1) and is given by O6) 

f(l)(1) = 1 ( 6~ B ) Ou~ A,(1) J~(1) tim ClaClfl - --~ C? ORlfl 

( ) OlogT 1 flmC~ 5 C,,~ (2.3d) 
+ Xz(1 ) ft(1) 2 2 OR,, 

where fl = 1/k~T and in Eq. (2.3d), as in the rest of this paper, summation 
convention is used. At(1 ) is the collision operator linearized around local 
equilibrium: 

~_z(1) = fd3 T(13)(1 + P,a)fl(3) (2.3e) 

Equation (2.3) determines the average state fl of the fluid, around which 
the density fluctuations are studied. 

2.2. Hydrodynamic Eigenmodes 

The next step in determining the long-wavelength part of C(1 t]2) and 
G2(12 ) is to compute the eigenvalue spectrum of the operator L~s(1 ) - TwO ) 
[cf. Eqs. (2.1a) and (2.1d)] for slowly varying disturbances. The right 
eigenvalue problem is defined as 

[Lss(1 ) - T~(1)]~(1)O~(1) = ~jft(1)OJ~(1) (2.4) 

where Oil(l) is the right eigenfunction, ~j is the eigenvalue, j is a general 
eigenfunction index, and the fact fl(1) has been inserted for convenience. 
Before defining the adjoint or left eigenvalue problem, we continue with a 
discussion of how to calculate O~(1). 

Following Dorfman and van Beijeren, ('6) we note that the right 
eigenfunctions of the operator Ls~(1 ) - Tw(1 ) vanish when R, is not inside 
the fluid volume. 4 Using this, we define 

0 ; ( 1 ) - ~  W ( R 1 ) ( ~ j ( I  ) (2.5) 

4 Since these eigenfunctions will be used to calculate, for example, the pair correlation 
function G2(12 ) and since G2(12 ) vanishes outside the fluid volume, it follows that for 
R i ~ ~2, Off(R/, Vi) must also vanish [cf. Eq. (4.1)]. 
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Inserting Eq. (2.5) into Eq. (2.4) yields 

W(R1) [ Ls~(1) - o~j] j~(1)Off(1) 

w(R,) = T.,(1)ft(1)Off(1)-  f / (1 )Of f (1 )V1  " - ~ 1  

= T,,(1)ft (1)Off(l) (2.6a) 

where 

Tw(1) ft (1)O~( 1 ) =fdwO(V 1 �9 r~)6(R, -  Rw) 

X ( fdV '~O(-V] .  ~)IV] �9 nlK(V1,V])j6(R1,V]) 

• ~ ( R I  ,V~) - IVl. nlft(1)~)~(1)) (2.6b) 

If we now assume that O~(1) is continuous at the surfaces of the container, 
it then follows that each side of Eq. (2.6a) must vanish separately since the 
tight-hand side of this equation vanishes everywhere except at the walls 
where it is discontinuous. Physically, this is equivalent to requiting that 
there are no sources or sinks of particles at the wall. (16) The resulting two 
equations are 

L~(1)j~(1)~J~(1) -- ~ojft (1)~J~(1) (2.6c) 

and 

= o (2.6d) 

For V1 �9 ~ > 0, Eq. (2.6d) is equivalent to 

IV 1 �9 ~lfi(R~, Vl)~J~(Rw, V~) 

= f  ' .  ^ ' .  , Vl) f/(Rw , Vl)Oj (Rw , V]) (2.6e) d V , 1 0 ( _ V  ' n ) [ V  1 / ~ [ g ( v  I , , ~R 

Equation (2.6e) will be used to determine boundary conditions on the tight 
eigenfunctions OR(l). Next we show that Eqs. (2.6c) and (2.6e) are equiva- 
lent to a system of differential equations with boundary conditions for the 
unknown O7(1) and wj. 

In order to derive this, we use that we are interested in slowly varying 
disturbances in space and time where the parameter l/d<< 1. Here d is the 
distance over which OJ~ changes, e.g., in the Brnard problem, the distance 
between the parallel plates that bound the fluid. 5 Since [cf. (2.2a)] the 

5 Typically, d ~ 0.1 cm. 
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collision operator fd3 7~(13)(1 + P13) in Eq. (2.6c) is of O(/ -1)  and O/0R 1 
in this equation is of O(d-1), we see that expansion parameter l/d will 
appear naturally in the solution of Eq. (2.6c). 

We make use of the fact that we are interested in slowly varying 
disturbances in time in treating also the eigenvalue, wj, in Eq. (2.6c) as 
small. 6 For the long-time behavior we are interested in here, only the 
smallest eigenvalues related to the conserved quantities in a binary collision 
are needed then. Thus, we introduce a kinetic (local equilibrium) projection 
operator that can be symbolically written in the convenient compact form 

5 

P(1) = ~ (2.7a) 
i= 1 (~bi(1) I ~i(1))/ 

P(1) projects functions onto the space of the five conserved quantities in a 
binary collision: the ffi(1) (i = 1, 2 . . . . .  5) given by 

e l ( l )  = m, r = rnClx(R,), mC,y(R,), mCI~(R1) 

(2.7b) 

mC?(R1) 3 ) 
r = B(R,) 2 2 

In Eq. (2.7a) we have defined an inner product in velocity space for two 
arbitrary functions f and g by 

( f (1)  I g(1)),  - f dV t  f(1)g(1)~z(1) (2.7c) 

with •(1) = ft(1)/n(Rl).  The symbol ! )z denotes that the weight function 
~t is associated with the ket vector. In general, the bra-ket  notation 
(r @;(1) and ]6i)t =- ~i(1)~/(1) is used only for convenience and 
mainly to obtain a compact notation for inner products, as defined by the 
bracket in Eq. (2.7c). 

Using Eq. (2.7), we write ft(1)l~ff(1) as 

fi(1)OJ~(1) = P(1)fl(1)(gff(1 ) + P• (2.8) 

where P•  = 1 - P(1). 
From Eqs. (2.8) and (2.6c) equations for P(1)fl(1)O~(1 ) and P• 

(gJ~(1) can be constructed which, when solved, will yield ft(1)l~J~(l) by Eq. 
(2.8). Thus, multiplying Eq. (2.6c) by P(1) and P• respectively, using 
Eq. (2.8), solving the equation for P• and then inserting the 

6 Since wj has the units of inverse time, we actually use that 0Jj is much less than t o I = Vth/l 
where Vth is the thermal velocity. 
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result into the equation for P(1)ft(1)(~J~(1) yields the following two equa- 
tions for Px(1)J~(1)(7)~(1) and P(1)ft(1)(9 if, respectively: 

P• 

= - P•  1 Ls,(l)P(1)ft(1)(~ff(1 ) 
[ P • • - ~oj] 

and 

(2.9a) 

1 
e(1)Lss(1)P(1) - e(1)Lss(1)P • [ P • • - ~j] 

x 1,• = o~;P(1)jS(1)(3ff (1)  (2.9b) 

We remark that Eqs. (2.9) and (2.8) are formally exact equations for 
ft(1)Of (1). 

In order to put these formal equations into a manageable form, we 
make use of the three small parameters that appear in the theory: (1) I /L  v 
<< 1, (2) l/d<< 1, and (3) o~jt0 << 1, where t o is the mean free time. 6 Then Eq. 
(2.9b) can be written to first order in these small parameters: 

e(1) v, . ~ -~  + g. 

[ O 0 ] , •  e •  ) + e ( 1 )  v ,  �9 ~ - ~  + g- ~-v5 ' 

I 0 0 ~(l)(1)]P(1))P(l)fl(1)~);(1 ) X V l ' - ~ l  + g "  OV 1 

= ~0jP(1) fl (1)O~(1) (2.10a) 

(2.10b) 

where 

X~71)(1) =.fd3 7~(13)(1 + P,3)f6'>(3) 

Equations (2.10) represent five coupled hydrodynamiclike equations that 
can be used to calculate j~(1)Off(1) and coj to lowest order in /~, i.e., to 

( ~0).7 

The explicit form of these equations can be determined as follows. We 
first define the hydrodynamic part of the right eigenfunction Off(l) by the 

7 We do not give the equation for P L(l)j~(l)Off(l) since it is of O(/~). [P(l)Off(1)] and not 
needed in our calculations. 
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equation 

P(1)fi(1)Off(1) 

5 (~ i (1 )n  ( R 1 ) 6 ; ( 1 ) ) l  
= ~ Iq~,(1)), 

^ 

_ I~>,~ARI ) + B if~>,[g~fR,) _ ,~s(R~) ] + Jf~>,n ~:(a,) (2.11) m 2 m T 
Equation (2.11) can be regarded as a definition of the first few velocity 
moments of O~(1). Inserting Eq. (2.11) into Eq. (2.10) and multiplying the 
resulting equation by fdV 1 ffi(1) (i = 1 . . . . .  5), y.ields five coupled hydro- 
dynamiclike equations for the unknowns ~j, ~ ,  Tj, and ~0j, i.e., a hydrody- 
namic eigenvalue problem. Using that 

m2n(Rt) fdV1CI,~Cle_ 1 ep , (1 ) (C , ,C ,~ - - - )  
r/a (R ' )Aa f l "  -- kBT(RI) a,(1) \ 3 

(2.12a) 
and 

_kBn(Rl)(aglC1 ( fi mC2 5 1 ~n (Rl )~afl = 2 2 ] - ~ , , ( l )  3 [ ,  &(1) 

(fimC~ 5)  (2.12b) 
X C1, 8 2 2 

where A~fl,,, =[d,vSB~ + 8,~8fl,-26~r and r/B(XB) is the low-density 
(Boltzmann) value of the shear viscosity (heat conductivity) and performing 
straightforward but lengthy algebraic manipulations, the resulting explicit 
equations are found to be 

,, 0 }~(RI ) (2.13a) o:jOs(Rl)- aRlp 
and 

k~ T .  . 
__ r ( R l ) ^  = 0Rift0 nkB ~j(R1)d~B + __~ pj(R1)e~fl + uBpj,~(R,) 

+ Uapjfi (R1) -- uaUBoj(R 1 + gc~oj(R1) 
J 

I ~ ( R , )  - u~aAR,)] 0 0 
+ ~ rlBA'~'w OR1, P 

+ ~ ~ oTj(R1)2 D ~ -  -if-D,r (2.13b) 
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and 

3 * 3 ~ ~ 3 /~(R1) OT 
- t d j 2  n k B T j ( R 1 )  = - _ nkau~-~'-~l Ts(Rl) - _ nkB p ORlv 

0 [/~'v(R1) -- g/v/~J(Rl) ] 
-- nk B T ORIv P 

+ ~ XB ~ Tj(R1) + - ~  0Rl, 8 

[ 8o~ ] o [P/R,)-u,~AR,)] 

+ 2D~ 0~(R,) D~, - -3- O,,j (2.13c) 
In Eqs. (2.13) p = mn is the local mass density, all hydrodynamic quan- 
tities are to be evaluated at the point R1, and DaB = (1/2)(Ou,JOR1B + 
aujORl ,  O. We remark that Eqs. (2.13) have the same form as the hydrody- 
namic eigenvalue problem for dilute gases obtained by linearizing the 
Navier-Stokes equations around a nonequilibrium steady state. 

In order to obtain boundary conditions for these differential equations, 
we use Eq. (2.6e). Examining Eq. (2.9a) and giving [At(l)]-l the weight l, 
we see by expansion around A/(1) -1 that e•  [P(1) 
ft(1)(~J~(1)]. Requiring Eq. (2.6e) to be satisfied to each order in # and using 
Eq. (2.11) yields 

IV1. ~I~,,(R~,V,) m---- T -  + ~(Rw)C,.(Rlw)[ Pj.(R~) - u~(Rw)Pj(Rw) ] 

+ [ B(Rw)mC21(Rw)2 - -231j' n(R~)--Tj(Rw) )T(R~)  

f / A ! A / t = dV]O(-  V, .  n)lV 1. n lg(v ,  ,V,)q,Z(Uw ,VI) 

• m= +fl(Rw)Clv(Rw)[PJ~(Rw) uv(Rw)Pj(Rw)] 

+ 2 - ~  
A 

From Eq. (2.14) boundary conditions on pj, ]~'v, and Tj to O(/~ ~ can be 
determined once K(V1, V'I) is given. To illustrate the derivation of bound- 
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ary conditions, we assume diffusive reflection of the particles at the wall 
which implies that a molecule striking the wall is absorbed and instantly 
reemitted with a velocity determined by a Maxwell distribution with the 
temperature T w = (kBflw) -1 of the wall. For this case K(VI, V]) --= KD(V1, 
V~) is given by (16) 

KD(V , V~)= IV,, ~l(2~rmflw)'/2( mflw ~3/2 [ -mV~ I- (2.15a) 
! 

Using that, for this scattering kernel, the boundary conditions on u and T 
to O(/~ ~ for stationary walls are (16) u(Rw)---0 and T(Rw)= T w and using 
Eq. (2.15a) in Eq. (2.14) yields 

= 0 
(2.15b) 

A 

r j ( R w )  = 0 

Equations (2.8), (2.10), (2.11), (2.13), and (2.15b) form a closed set of 
equations by which the right eigenmodes can be determined to O(/~).8 

To complete the calculation of the nonequilibrium hydrodynamic 
modes, we need to determine equations for the adjoint or left eigenfunc- 
tions O~(1). This will be done in a manner analogous to that just given for 
O~. To proceed, we normalize the eigenfunctions by requiring 

((gL(1)ft ( I )O; ( I ) )  -faR,fay, ej, (2.16) 

where the integration over R 1 is over all space and 8jk is in general a 
product of Dirac and Kronecker delta functions depending on whether the 
set of indices j and k are continuous or discrete. In Eq. (2.16), we have 
defined the brackets ( ) to be an inner product in both velocity and 
position space with no weight function. Further, because Off(l) in Eq. 
(2.16) is proportional to the characteristic function W(R1) [cf. Eq. (2.3b)], 
the spatial integral in Eq. (2.16) is actually restricted to the fluid volume ~. 
To determine the kinetic equation for | we multiply Eq. (2.4) by 
(| use Eq. (2.16), and integrate by parts to obtain 

- ( f i (1 )O~(1) [V]"  O/OR 1 + g .  O/~V 1 -~- Tw + (1) 

+ fd3 f,(3)T(13)(1 + P13)]O~(1)) 

= ~j(fl(1)O~(1)O~(1)) = ~ok3j~ (2.17a) 

s In our explicit calculations, we compute the eigenvalues to O(/z) but the eigenfunctions to 
O(/z ~ only. Because of this, we need not consider corrections of O(#) to the boundary 
conditions. 
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where in giving Eq. (2.17a) we have let T(13)(1 + el3) act backwards and 
defined the adjoint of Tw(1) to be T~+(1). It is straightforward to construct 
Tw+(1) from TwO) with the result 

T~ + (1)h(1) = f a w S ( R ~  - R w ) 0 ( - V l .  ~) 
• {IV,. nlfavq 0(V]. ~ ) g ( v ] ,  V0h(R 1 , V]) - I V l .  ~ I h(1)} 

(2.17b) 

From Eq. (2.17a) it follows that the adjoint kinetic eigenvalue equation is 

- V i ' -g~  +g'~V-~ +T~+(1)+ d3fl(3)r(13)(1 + P~3) O~ 

L = ~0ke~(l) (2.17c) 

From Eq. (2.17c) we shall now obtain a set of hydrodynamic equations that 
determine O~(1). 

Taking Of(l) to be continuous at the walls, we obtain for L O~(1) the 
two equations 

- V l - - ~  +g'~v-~ + d3f1(3)T(13)(1 + e~3) O~(1) 

= ~0~o2(1) (2.1aa) 

and 
- - +  L T w (1)Ok(1) = 0 (2.i8b) 

For Vl �9 ~ < 0, Eq. (2.18b) is equivalent to 

t _ _ f  / / A t t Ok(R w ,V1) -  dV, 0(V 1 �9 n)K(V, ,Vx)| ,V 0 (2.18c) 

From Eq. (2.18c) we will construct boundary conditions for the O~(1). 
Hydrodynamic equations and boundary conditions for O~ can be 

obtained from Eqs. (2.18a) and (2.18c) in a manner analogous to that given 
for ~R. Thus we introduce an adjoint kinetic projection operator: 

5 Iq~i (1)><q,,-(l) I O~(1)>, 
e + (I)OL(1) ~ 

i = 1  (@,(1) I *i(1)), 

~= 1~1)/3; (RI____~) + ,8 i,/, (1))ip% + (R 0 _ u~M (R1)] 
pm p 

~ : ( R 1 )  
+ Iq"5(1)) T (2.19) 
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Using arguments identical to those given for the 0~,  we can construct 
,~+ A+ 

equations for O , p~ , and it+ that are valid when l / L  v << l and l/d<< 1. 
These equations are to first order in these parameters 

A+ 
%Pk ( R 1 ) = - - -  8 A+ ,,+ ,,+ 8 8u~ 

OR,, Pk~ (a l )  + [ Pk~(R') -- u~0k (R,)] ~ ~BA~B,w ~Rlr 

+ 
nk B T 

A+ 

T -~--~1~"B-0~1~ + 2rlBD'~e(D~B - T J 

(2.20a) 

and 

,+ O , , 

l --COkPka(a') = ~ [ ----~-Pk (R1) + nkBT2 (R1) 

~- (RI) O(nkBT) 

0 ORl~ 

+ h kBT ~ 0 I-P'k+(RI) - U~pK+(R1)] 
m OR1B r/BA'~B'v" 8R]y nkBT 

Tk + (R1)  5 0T 
- -~ nke ORl~  T 

- 2 T  T/~A~/~,r~ 0R]r  T 

~u e 
- uea; (u,) ] oR,  

0 A+ ^+  
Pk~ (R,)] 

[ ~ + a ( l l )  - ~,x~k ,-I- (R1)  1 ~(nkBr) 
nkBT ue OR1I ~ U'~%t3k+ (R1) 

(2.20b) 
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and 

3 *+ 
- o~ k -~ nka Tk (R1) 

=nks  T 0 
OR1~ 

*,+ 
.,,+ .,,+ kB [pk.(Rl) _ U~Pk (Rl) ] O T  _ 3nka Tk (R~) 

ORlp T m 

7~k+ (R1) A 3U a 0 2 
-nkBTff(R,)-~-R--~I ~ + T2)~B OR,,~OR1,~ T 2 

+ 3  0 ^+ ~k~uo ~ Tk (R 0 

0T 
u,~ ORl~ 

kBT2(O~qa) Ou~ 

m ~ o OR1B 

0 [Pk+(R1) - -  U " P k + ( R I ) ]  
• A,~, w "~Rlv nksT 

A+ ] 
m Tk (R1) 3u~ 
k B T 2 0Rlv  

(2.20c) 

In Eqs. (2.20) all hydrodynamic quantities are to be evaluated at the 
point R 1 . 

Boundary conditions for these equations can be obtained, as they were 
for the right eigenfunction equations, by using Eq. (2.18c) in place of Eq. 
(2.6e). For diffusive reflection of the particles at the walls we obtain 

^+ &~ (Rw) = 0 
A+ 
r~ (Rw) = 0 

(2.21) 

Equations (2.19), (2.20), and (2.21) form a closed set of equations by which 
the adjoint hydrodynamic modes can be determined. 

Finally, we remark that for slowly varying phenomena the set of 
hydrodynamic eigenfunctions approximately satisfies the completeness rela- 
tion: 

1 ~ ~ ]ft(1)Off(1))(oL(1)[ (2.22) 
J 

wherej is a general eigenfunction index that can be continuous. In Sections 
4 and 6 this relation will be used to calculate the singular part of the 
correlation functions in a gas near the convective instability point at 
R = R c. 
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3. THE H Y D R O D Y N A M I C  E I G E N M O D E S  FOR R < R C 

In this section and in Section 5, the general results of Section 2 are 
used to calculate explicitly the hydrodynamic modes for a fluid in a B6nard 
celt. Before we can do so, however, we must first specify more precisely the 
average stationary state of the fluid. The average stationary state is de- 
scribed by fl(1), which is given by the Eqs. (2.3) as far as its velocity 
dependence is concerned and by the Navier-Stokes equations as far as its 
position dependence is concerned through n(R1), u(Rl), and T(R 0. Because 
of the nonlinearity of the Boltzmann equation and the ensuing nonlinearity 
of the Navier-Stokes equations not all solutions of these equations are 
stable. To find the stable solutions, we proceed as follows, in close parallel 
to what is done in hydrodynamics. ~5) Linearizing the time-dependent 
nonlinear Boltzmann equation <16) for f l( l t)  [cf. Eq. (2.1c)] around the 
steady state Chapman-Enskog solution feN-E, Eqs. (2.3), by writing fl( l t)  
= fen'E(1) + 8fj(lt), one is led to a linear equation for 8fl(lt ) of the form 

o 

The stability of the stationarity state, fcrl-E(1), then follows if all the 
eigenvalues, o~j, of the operator [Lss(1) - Tw(1)] are greater than zero since 
/~fl(lt) would then decay to zero as t ~ o o .  Therefore, since we are only 
interested in the hydrodynamic regime, i.e., small ~0j, the study of the 
stability of the fen'E(1) reduces to the study of Eqs. (2.13), i.e., of the 
eigenvalue problem obtained by linearizing the Navier-Stokes equations 
around the stationary state described kinetically by fen-E(1). 

As mentioned above, an explicit expression forfl(1) can be derived by 
using Eqs. (2.3) for its velocity dependence and by using the Navier-Stokes 
equations to determine its position dependence through n(R1), u(R 0 and 
T(R]). When R < Rc, the Navier-Stokes equations that describe the stable 
average state are according to the Chapman-Enskog method 

u = 0 ( 3 . 1 a )  

d_d_ (nkBT) = og (3.1b) 
dZl 

d IX d T )  
dz 1 ~ B dz I = 0 (3.1c) 

In giving the Eqs. (3.1), we assumed that the gravitational field and the 
varying temperature field are in the z direction. Further, we take the fluid 
t o  be of infinite extent in the x, y plane, but bounded in the z direction by 
parallel plates at z 1 = 0 and d. 

To prove that the solutions of the Eqs. (3.1) represent the stable state 
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of the fluid for R < R C, one has to establish that the eigenvalues 0~j in Eq. 
(2.4) are all greater than zero. Tha t  is, we have to consider the hydrody-  
namic eigenvalue problem given in Section 2, Eqs. (2.13) or (2.20). The  
equations for the right eigenvalue problem are then [cf. Eq. (2.13)] 

~j#j(RI) = 0 A PJv(RI) 

A k s T ,, 1 - 0 nks Tj(R1 ) + -tojpj~(R,) = OR1, ~ --~--pj(R1) + ~zgOj(Rt) 

k~,(R1) 
+ ~ TIsAc~3'Yv ORI~ P 

A 
-- r -~ nk s Tj(Rl) . . . .  

(3.2a) 

(3.2b) 

3 ks , " R "  dT 0 /~.(RI) 
2 m Pjz[ l)'-~zlzl-nksToRl,, P 

0 0 0 OXs Tj(RI) dzl 

(3.2c) 

To  solve the eigenvalue problem defined by Eqs. (3.2), we first order  
these equations taking into account  that  there are two small parameters  at 
our disposal. The  first small parameter ,  l /d ,  which we have already 
considered before, represents the relative smallness of the terms in Eq. (3.2) 
containing transport  coefficients ~/8,XB ( H I )  to those that do not. The  
second small parameter  is d / L  v, which we have not  used before. Here  L v 
is a gradient length on the order  of T / I V T  I with IVZl--dT/dz~. This 
small parameter  represents the variation of t3, T, and l~ (over d) to the 
relatively slow variations of the hydrodynamic  fields (over Lv). 9 Using Eq. 
(3.2) and neglecting terms that  are second order  in these small parameters  
and using that the eigenvalues, ~j, of interest are of order  l c /d  2 lO yields the 
equations 

OR,---S- - o + O ( t / d )  (3.3a) 

(3.3b) ~ j ( R I )  = - ~ T j ( R l )  -1- O(l/d) 

9 For typical experiments in a B6nard cell d = 0.1 cm, T = 300 K and dT/dz t = 50 K/cm, 
which yields d/Lv~ 1/60 << 1. 

10 In giving this estimate, we are neglecting sound mode phenomena, whose lowest-order 
eigenvalues are of O(c/d), with c the velocity of sound (of. Section 7 for a discussion). 
Further, we used that, away from the instability point, the eigenvalues of interest are at 
most of O(lc/d2). 
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A 

,, 0 nkBTj(R, ) + _ _  pj(R1 _ aazpg 
- ~ojpj~ (R 1) = O/~1~ m T 

02 + v  OR]BORI~/~-~ (R1) (3.3c) 

_~0j~.(R1) = /~z(R1) d T + D  r 02Tj(R~) (3.3d) 
P dgl OR1BOR1 ~ 

In giving Eqs. (3.3), we have neglected all sound mode phenomena (cf. 
Section 7.2). Here the kinematic viscosity v = 7 / 0  equals in our case of a 
dilute gas 7/B/o, while the thermal diffusivity D r --= )~/0Ce equals 2)~/5nk B . 
In Eqs. (3.3a) and (3.3b), we have explicitly exhibited that the corrections 
are of O ( l / d )  since these estimates are used in obtaining Eqs. (3.3c) and 
(3.3d). Furthermore, the ordering scheme presented here enables us to 
consider o g / T ,  dT /dz lp ,  v, and D r in Eqs. (3.3c) and (3.3d) as constants 
since their spatial variations would lead to terms which are second order in 
the small parameters l / d  and d / L  v. 

The system of equations (3.3) are subject to boundary conditions. 
Although those given by Eq. (2.15b) are the most realistic, we will use in 
this paper the mathematically simpler free-free boundary conditions: 

A A A ^ 

Tj = pjz = O~x/OZ 1 = O~jy/Oz 1 = 0 at z I = 0 and d (3.4) 

that are often used in the literature on the B6nard problem. (5-1m9) With 
Eqs. (3.3) and (3.4), the right eigenvalue problem can be solved. (5) There is 
one viscous eigenvalue: 

~% = 1,(k~ + k 2) ~ l,k 2 (3.5a) 

with expansion coefficients [cf. Eq. (2.11)] given by 

A A 

~v(Rl , k  z ,k 0 = Tp(R 1 ,kz ,kN) =p.~(R] ,k~ ,kll ) = 0 

p"~x(R,, kz,  ktl ) - e ikl' "RIll A~, (k  z , k/i)/~yCOS k~z, (3.5b) 
2~r 

AAR, ,k,) = e'k" S" A (kz k,);xcosk z, 
2qr 

In Eq. (3.5) u, k z, and kll are all eigenfunction labels and the wave numbers 
k = ( k x , k y , k z ) ,  k u = ( k x , k y )  and k = k / l k  I have been defined with kz 
= m r / d  (n = 0, 1, 2 . . . .  ) discrete and kLi continuous. Further, A~(kz, kll ) is 
a normalizing factor that will be determined later and R 1 = (x~, Y0. In 

�9 . I[ 

addition to this eigenvalue and elgenfunctlon, there are two others that are 
combinations of the equilibrium heat and viscous modes. The eigenvalues 
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for these modes  are 

~ox• (k z , kll ) = X • (k  z , kll ) 

(v + D r )k  2 
2 

{[ (1 ,2} 1 +  1 (1, + D r )2 ~ 

(3.6a) 

where 

R(  kz ,kll) _ gar( d T /  dzl)k~ 

R~ ~,Drk 6 
(3.6b) 

The expansion coefficients [cf. Eq. (2.11)] for these modes  are 

eiU,,'R~,, d l o g T  Ax._ (kz,kll)sinkzZl 
0x~ (R, ,kz ,kll ) = 2qr dz] IX• (kz,kll) - Drk21 

7~x§ eikrFRIH 1 dT Ax• (kz'kll) s inkgl  
o dz, IX• (kz,k,) - Drk 2] 

,, eik,i. R,,, AX+_ ( kz ' kll)sin kzzl (3.6c) PX+z(R' ' kz 'kll) - 2 ~  

" eik"'Rhl AX• (kz ,kll ) ikykz 
PX~-Y(R"kz'kl l)-  2~r - - ~  --c~ 

" eik"'R'" Ax._ (k z ,kll ) ikxk~ P  x(Rl'kz'k0 - - 7  c~ 

with k z, klL, k, and RI~ given above Eq. (3.6a) and where A x (kz,kll) is a 
I . . •  . . 

normalizing factor that will be determined later. Further, in Dvlng Eq. 
(3.6), we have used the inequality mg/ksT<< d(log T) /dz  r 

We remark that the eigenvalue X (k z, kll ) becomes  zero when R(k  z, kll ) 
/ R  C = 1 and it is at this point  that an arbitrary perturbat ion no longer 
decays to zero and the instability occurs. This zero eigenvalue first appears 
for k z = ~r/d and kll = kllc = ~ r / d ~ ,  where kLi c is the critical horizontal 
wave number.  (5) Using these wave numbers,  the critical Rayleigh number  
for our boundary  conditions can be determined to be R c = 27~r4/4. (5) 

F rom Eqs. (2.11), (3.5), and (3.6) one can immediately obtain the fight 
hydrodynamic  eigenmodes to O(/z~ 7 There is one viscous eigenfunction: 

eik"" R"~ flA~(k z , kll) [ l~y V,~ - i~ x V,ylcos(kzZl)eOz(1 ) f l ( 1 ) O f ( l '  kz ' kit) - 2~r 

(3.7a) 
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with an eigenvalue given by Eq. (3.5a). We remark that this viscous mode 
will not contribute to the ddcf [cf. (4.9a)] because of tensorial symmetry. 
Further, the hydrodynamic modes with eigenvalues given by Eq. (3.6a) are 

fl(1)(9~• (1, k~, kll) 

dlog 
- -  eik"'R'JI A~+ - ' kll)~'(1) 

X 

+ 

T sin(k~z]) 

[ ( < ,  k,,) - ] 

( ,mV?2 25) + ~msin(k~zl) Vlz 

flmc~ ikz[ kyV,y + kxV, x]~ 
k 2 J 

(3.7b) 

To determine the normalizing factors A~ and An_ * in Eq. (3.7) and to 
complete the calculation of the modes for R < Re, the adjoint eigenfunc- 
tions, | are needed. The hydrodynamic equations for the left eigen- 
value problem when R < R e are [cf. Eq. (2.20)] 

0 ,,+ o~.~. + (R])  - ~R], ~ pj,~ (R~) (3 .8a)  

= - t~j + (R , )  g r ~  -~ ~ Y P J  (R1) + nkBTj+(R1) 

+ - -  
m ORIB 7/sA~B'v~ ORlv nkBT 

_ 5 nk B dT ~+ (R1) 6~ z (3.8b) 
2 dz I T 

^ +  

�9 0 Pja (R1) kB .+ dT 
- 3nkBwjTj+(R])2 = nkBToRI,~ p m pj~ (R1) dzl 

(R,) 
+ T2~B ~RI.~R1, ~ T 2 (3.8c) 

The system of equations given by Eqs. (3.8) can be solved in a manner 
analogous to that used to determine the right eigenfunctions. With the left 
eigenfunctions determined and the normalization condition 

(O~(1,k 2 ,kll)ft(1)Off(1, k z ,kil)) = r kll ) (3.9) 

the normalized left and right eigenfunctions can be found. 
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Since we have neglected the sound eigenfunctions, l~ the relevant 
modes to leading order in our small parameters are (1) a viscous mode with 
normalized right and left kinetic eigenfunctions given by 

fl(1)O~(1, k~, kll ) = (2/d)  1/2 eikt'' R,,, 271" [ ~o/(k~xx q- k'~Y)] 1/2 

X[ I~yVlx -- ]~xgly]COS(kzzi)~i),(1 ) (3.10a) 

O~( 1, k~, k 0 = (2/d)  '/2 e -ik,,.2~r % [flrn/n(k~+k~)]'2"" 1/2 

• [ l~y V,x - I~ V,y]COs(k~z 0 (3.10b) 

and with an eigenvalue given by Eq. (3.5a); (2) and (3) two eigenfunctions 
that are combinations of the equilibrium heat and viscous modes. The 
normalized fight and left eigenfunctions for these modes are 11 

I,(1)4~_. (l, k~, k,) 

_ eik"'R', 2 2 gk~ 1 
27r drn 5 k 2 [2;k+_(k , ,kO-(v+Dr)k  2] 

sin  .z,  
• < 2 2 

+ tim cos(k~z 0 ik, l kT(kyVly + kxVlx )J~ht(1) (3.10c) 

O~+(l,k~ ,k,) 

e-ikll'lll, [2 2 gk~ 
2~r l ~  m 5 k 2 

• in(kzz0 2 

1 }1/2 

[2X_+(k~,k 0 ( v + D r ) k  2] 

5 ) + 5 dlog T k~ sin(k~z,) 
2 2 dz, k 2 [X+(k~,kll ) - u k  2] VI~ 

dlog T ik~ (k~ VI~ + ky Vly ) c~ 
dzl k 2 [X• (k z ,kll ) - vk 2 ] (3.10d) 

11 In giving Eqs. (3.10c) and (3.10d), we have consistently taken v, Dr, and d(log T)/dz 1 to be 
constants. 
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with eigenvalues given by Eqs. (3.6a). Further, an approximate complete- 
ness relation exists for these modes given by [cf. Eq. (2.22)] 

1-~ X X f dkl, lf~(1)6);(1,~,k,))(Of(1,kz,k,)l (3.11) 
j = v,h+_ k~ = n ~ / d  

In the next section Eqs. (3.6), (3.9), (3.10), and (3.11) will be used to 
calculate the singular behavior of the density-density correlation functions 
in a gas when R ~ R~. 

4. EQUAL AND UNEQUAL TIME CORRELATION FUNCTIONS 
FOR R < R~ 

In this section the results of Section 3 are used to calculate the 
long-wavelength parts of G2(12 ) and C(l t [2  ) when R < R c. First Eqs. 
(2.1a) and (2.1d) are solved formally and then the approximate complete- 
ness condition given by Eq. (3.11) is used to explicitly evaluate these formal 
solutions. 

The formal solution to Eq. (2.1a) for C(l t  12 ) when solved as an initial 
value problem is 

C( l t l2  ) = e-[L~Xl)-Tw(')]t[(~(1 -- 2)fl(1) + G2(12)] (4.1) 

Here fl(1 ) is given to O(/0 by Eq. (2.3). The formal solution to Eq. (2.1d) 
for G2(12) is 

G2(12) = 1 7~(12)(1 + P12)W(ROW(R2 ) 
[Lss(1 ) - Tw(1)+ Lss(2)- Tw(2)] 

X [ ft(2)f(')(1) + O(/~2) ] (4.2) 

where in giving Eq. (4.2) we have neglected terms of 0 ( #  2) on the 
right-hand side of Eq. (2.1d)J 2 Further, for R < Re, fO)(1) as given by Eq. 
(2.3d), reduces with Eq. (3.1a) to 

1 1 dlogT VI~( flmV21 5 - ft( ) ~ ) (4.3) /(')(1) A,(1) 2 2 

Using Eqs. (3.10) and (3.11), Eqs. (4.1) and (4.2) can be explicitly 

~2 To the particular solution of Eq. (2.1d) for G2(12 ) given by Eq. (4.2), one should, in 
principle, add the solution of the homogeneous equation [Lss(1 ) - T~(1) + Lss(2 ) - Tw(2)] 
G2h(12) = 0. However, in the low-density approximation considered here, where the differ- 
ence in position of two colliding particles is neglected, this solution is zero. In general, 
although G#(12) will not vanish, it will be of very short range, like in thermal equilibrium. It 
can, therefore, always be neglected when one is interested in the long-range behavior of 
G2(12). 



664 Klrkpatrlck and Cohen 

evaluated. Inserting one set of modes into Eq. (4.1) yields 

C( l t l 2  ) = ~ ~,, fdk, e-~(kz"~")'lfl(1)O#(1,kz,k,) ) 
j k~ 

X (O~(1, kz, kll)[ [ 8(1 - 2)fl(1) + G2(12)] ) (4.4) 

Using two sets of modes in Eq. (4.2), we obtain 

E G2(12) = 
j ,q  kz,k'~ 

1 x [,oj(kz, k,) + o,q(z,~3] 

x ( ( e~(l, K, k,)O~(2, k;, k~)l 

• f(12)(l  + e,2) W(ll,) W(R=)f~(2)#l)(1))) (4.5) 

From Eqs. (4.3), (4.5), and the identity (15) 

f av, f + 
8(Rl R2)W(R,)n~ f dV,,t(1)(9~(l,kz L , , = - _ ,ktl)Oq(1,k~ ,kll) 

( f lmV?  5 )  (4.6) 
X V~ 2 2 

the long-wavelength part of G2(12 ) can be obtained. Further, this result and 
Eqs. (2.3a), (4.3), and (4.4) also yield the long-wavelength part of C(lt  12 ). 
Because the final results of these calculations are rather lengthy, we will not 
reproduce them here. We will, however, explicitly give the unequal time 
density-density correlation function 

< ~ p ( R l , l ) ~ p ( R 2 ) ) s  s ~ M p o ( R l , g 2 , t  ) = m= f dV, f dV=C(ltl2) (4.7) 

that is observed in light scattering experiments. 
Since it is the Fourier transform of the ddcf that is usually measured, 

we first compute 

Moo(kz,k'~,k,,t)=fdR,2foadz,foddZ2 e-ik"'I~'21~ 

X sin(kzZl)sin(k'~z=)Mpp(R 1 , R2, t) (4.8a) 

of which the inverse Fourier transform is 

2 ~ sin(k,z,)sin(k, z2) ~ dkll k e ii" 121] 
M o p ( R 1 , 8 2 ,  t )  = -~ k~,k'z "-' (2~)  

• Mo~,(k ~ , k ' ,  kll, t) (4.8b) 
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We remark that the Fourier transform Moo(k:,k':,kll , t), defined by Eq. 
(4.8a), is very convenient to calculate since the eigenfunctions, Eqs. (3.10), 
are expressed in terms of wave numbers. From Eqs. (2.3a), (3.10), (4.4), 
(4.5), (4.6), (4.7), and (4.8a) we straightforwardly obtain 

Mpp(k: ,k; ,kll ,t) 

Mop(k: , k':, kll, t = 0) 

[ X + (k~, kll ) - X _ (k: ,  kll ) ] 

X {[/,k 2 -  X_ (k~ ,kit ) ] e x p [ - X _  (k: ,kH)t ] - [ v k  2 -  X+ (k~ ,kl,) ] 

x 

where 

Moo( k ~ , k': , kll, t = O) 

pkBTk~ (ardT/dz l )  2 
X exp[ - X + (k: ,kH)t ] } + 8k:k; (.+ [1- 

( e x p [ - X _  (k z , kll)t ] - e x p [ - X +  (k: , k 0 t ] )  

Ix+ (k~ ,kll ) - X_ (kz, kll) ] (4.9a) 

p 2 k B T X T ( T  - l )  

= dk, k; -~ + Dr(v  + Dr)k6[1  - R(kz,kl l ) /Rc ] 

okB Tk~( a rdT /  dz, ) 2 

(4.9b) 

Here ~, = ep/c v is the ratio of specific heats and XT = (3O/3P)r/O is the 
isothermal'compressibility. We remark that the Mpp(kz, k':, kll, t = 0) repre- 
sent Fourier components of the equal time correlation function (6p(Rl) 
8o(R2))s s - -  M0o(Rl ,  R2). 

As mentioned in Section 1, we have written Eqs. (4.9) in a form valid 
for all densities, as obtained from a hydrodynamic treatment rather from 
the kinetic theory presented here. Of course, the kinetic result is obtained if 
the low-density limit of Eq. (4.9) is taken, i.e., Xr is replaced by (nk 8 T) -  1, y 
by 5/3, cp by { k B / m ,  a T by T -l ,  and the transport coefficients ~/ and X 
by their low-density (Boltzmann) values 7/8 and X B as given by Eqs. (2.12a) 
and (2.12b), respectively. 

Examining Eqs. (4.9), we note that when k: = w / d  (n = 1) and kll is 
near kllc = ~/d~/2, the equal and unequal time (ddcfs) are singular if 
R ------ R c. Using 

- k  2 R ( k z = ~ / d ' k ' l  k 'rc)  ( 1 -  R ) 4(kN IIc) 
1 -  Rc =- + 3k c - e<( rr) 

(4.10a) 
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and 

pD r 

with R c = 27~r4/4 and k 2 = 7r2/d 2 + k~c = 37r2/2d 2, yields 

Mpp(k: = k'~ = ~r/d, k l l -  kll ~ , t) 

Mpp(k~ = ~ = rr/d, kll ~ k u ,  t = O) 

(p + D r )k 2 

+ 
2 6 (p + Dr) k~ 

where 

(4.10b) 

rDrk2~ E<(kll)t] + DTk2exp[_O, + Dr)k2ct] } 
+ DT) 

( a T d T / d z l ) 2 { [  PDTk2E<(kEOt] 
E< (ku) exp (p + DT ) 

- e x p [ - ( v + D r ) k 2 t ] )  (4.11a) 

Mpp(k: = k'~ = 7r/d, kll--~ kl l ,  t = O) 

p k rxr(v- 1) 
+ (4.11b) 

Dr(P + Dr)k 6 E< (k 0 

From Eqs. (4.10) and (4.11a) it follows that for the wave numbers 
k: = ~r/d and k41 ~ kllc = ~r/dv~ those parts of the unequal time density- 
density correlation function proportional to e x p [ - X  t] exhibit critical 
slowing down as [R c - R [ ~ 0 .  Further, the equal time density-density 
correlation function, given by Eq. (4.11b), is singular for these wave 
numbers as I R e - R [ ~ 0 .  This singular behavior of Moo comes from 
the combination j = q  = to~_ in Eq. (4.5) for G2(12 ), leading to a factor 
[0~x_(kz,kll ) + o~;~_(k~,kil)] -1 that ultimately reduces to the factor [ 1 -  
R(kc ' kll)/Rc]-1 in Eqs. (4.9), which gives in turn the singular behavior for 
kll-- kll c at R = R c. Thus, the singularities in G 2 and Mpp at R = R C are a 
direct consequence of a mode-coupling contribution to G 2 from two modes 
that have vanishing eigenvalues at R = R~, i.e., the same modes that cause 
the convective instability. We remark that the singularity in Mpp(t = 0) is 
due to the singularity in the nonequilibrium part of G2(12 ). This part of 
G2(12 ) has been discussed previously away from the instability point, where 
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it was shown that it was responsible for long-range correlations in a 
nonequilibrium fluid. (1-4) We note that the same expression for G2(12 ), Eq. 
(4.2), that leads to Eq. (4.1 lb) can also be used, if the effects of gravity and 
the walls are neglected, to derive both the long time tails of the time 
correlation functions that determine the transport coefficients (3'12) and the 
nonexistence of a virial expansion of the transport coefficients. (3'2~ Here 
we see that Eq. (4.2) for G2(12 ) also leads to singularities in the equal time 
correlation functions near a hydrodynamic instability. 

We also note that for g = 0 and consequently R(k)/R c = 0, Eqs. (4.9a) 
and (4.9b) for unequal and equal time correlation functions reduce to the 
expressions for Mpp(t) and Mpp(t = 0) obtained previously [see Ref. 3, Eq. 
(3.4)], when gravity and walls were neglected. This implies that the unequal 
and equal time ddcfs and therefore also the line shape and intensity of the 
central or Rayleigh line of the light scattered by a nonequilibrium fluid are 
independent of the presence of walls. 

In the last part of this section, the spatial decay of the equal time ddcf 
will be examined. We will also show that the equal time density-density 
correlation function exhibits modified Ornstein-Zernike behavior and be- 
comes singular when R approaches Re. From Eqs. (4.8b) and (4.9b), we 
obtain 

2 sin(kzzDsin(kzz2)f dklf e,k,,-R,2,, Moo(R1, R2)=  ~ 2 

X 
~p2keTxr(, f - 1) pkBTk ~ + 

Y Dr(v  + D r ) k  6 

[ol dT 2 1 } 
X t rdz 1 ) [ 1 -  R(kz,kll)/R~] 

pEk~TTrO,- 1) 
6(R l - RE) + Dpp(R, ,R2) (4.12) 

Because we are interested only in long-range correlations near R ------- R c, the 
contribution to Moo(R1,R2) proportional to d(R 1 - R 2 )  can be neglected. 
Further, although all the k z components of Dpp(Rl, 112) are of long range as 
has been discussed previously, O-n) here we are interested only in those 
parts of Doo(R1, R2) that are of longest range (>> d) and are enhanced near 
R ~ Re. These enhanced contributions to Dpp(R1,R2) occur when k z = 
~r/d (n = 1). Denoting this contribution to Dpp(R1,R2), which becomes 
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singular at R = R~, as D~o(R1, R2) and using Eqs. (4.10) and (4.12) yields 

1 2 sin(~rzl/d)sin(rrz2/d) Dpp(R~ ,R2) = okST Dr(P + Dr ) -d 

1 • 
[(1 - R/R~) + (4/3)(k  H - kllc)2/kl~] 

•  foo2~dOeik"R12,s ~176 (4.13) 

The use of Eq. (4.10) in Eq. (4.12) is justified as long as R is sufficiently 
close to R c, because then the major contribution to the wave number 
integral o v e r  ktl comes from values of kll restricted to a small region near 
kllc. The asymptotic analysis of Eq. (4.12) for large R12~ is straightforward 
with the result 

D;o(RI ,R2, RI21, >> d) 

_~ pksT(ardT/dzl)2 1 2 sin(TrZl/d)sin(erz2/d) 
Dr(D r + ~) d 

X vf3 d 2 1 
54 ~r 2 [1 - R/Re] 1/2 (2/~rk%R12")1/2 

• cos[ kllcRlz,,- Tr/4]exp[- Rlz,,(1- R/  R~)'/2-~d ~f-~ ] 

(4.14) 

A discussion of this and other results presented in this section can be 
found in Section 7. Further, restrictions on the applicability of the theory 
presented here due to singular mode-coupling contributions to the eigen- 
value •_ (kz, kll ) are given in Appendix C. 

5. THE H Y D R O D Y N A M I C  E IGENMODES FOR R ~> R c 

For R > Rc the steady nonconvecting state is no longer stable because 
the eigenvalue X_ (k z = ~r/d, kll ~ kilo) , discussed in the previous sections, 
is less than zero. The physically realized fluid state is typically still a steady 
state but with macroscopic motion in the form of two-dimensional 
rolls. (5,19) The precise form of this state is very hard to determine because 
of the difficulty in solving the nonlinear Navier-Stokes equations. How- 
ever, if one is interested, like we are, in the behavior near the instability 
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point, then a perturbation expansion in powers of the deviation of R from 
R c can be used and the fluid state can be approximately calculated for 
small values of R / R c  - 1. Denoting the deviations from the nonconvecting 
hydrodynamic fields by A o, A T, u z, ux, and uy and assuming that the axis of 
the rolls is in the y direction, an approximate calculation, that can be found 
in the literature, (19) gives these hydrodynamic fields to O [R/R~ - 1] as 

Ap(xl , z l )=  -- ~ A T ( x  1 ,zl) (5.1a) 

A T ( x  1 , z l )=  -9f3-  d~r3 dT,~ ( R / R ~ -  1)l/2sin(~rZl/d)cosaxl 
R dz~ 

+ d dT~ (R - R~) sin(27rZl/d) (5.1b) 
~r dz 1 R~ 

u~(x I , z l )=  - ~  2~r~ ( R /  R~ - 1)l/2sin(~rZl/ d)cosaxl  (5.1c) 

Ux(Xl , z l )=  - - ~  4~r(3/2)l /2(R/Rc - 1)l/2cos(~rzl/d)sinaxl (5.1d) 

uy(x, ,z,) = 0 (5.1e) 

where a = klj c = ~/dv/-2 and dTnc/dz I denotes the derivative of the temper- 
ature field in the absence of convection. Furthermore, R, dTnJdz l ,  and D r 
have been taken to be constants in the derivation of Eq. (5.1) which is 
consistent with the ordering scheme developed below. In determining these 
hydrodynamic fields free-free boundary conditions have been used: 

A T  = u z = O U x / O g  1 = 0 for Z 1 = 0 and d (5.2) 

In this section the formal results of Section 2 are used to calculate 
explicitly the hydrodynamic modes for a B6nard cell when R ~> R~ and the 
average hydrodynamic state of the fluid is given by Eqs. (5.1). 

To determine the hydrodynamic modes, we must solve the hydrody- 
namic eigenvalue problem, defined in Section 2, for the average hydrody- 
namic state discussed above. The relevant hydrodynamic equations for the 
right eigenvalue problem are given by Eqs. (2.13) with n = n~ + Ao /m ,  
T = Tnc + AT, and u given by Eqs. (5.1), where nn~ and T,~ are the number 
density and temperature in the absence of convection, respectively. To 
solve this eigenvalue problem, we order Eq. (2.13), taking into account that 
there are three small parameters for R ~ R~. This ordering scheme is 
similar to that used in Section 3 to determine the modes for R < R~ where 
there were two small parameters. The three small parameters for R ~> R~ 
are (1) l /d ;  (2) d / L  v with L v ~ T / I V  T~c[; and (3) A which represents the 
deviations of the hydrodynamic fields from the noneonvecting state [cf. 
Eqs. (5.1)]. Neglecting terms that are of second order in these small 



670 Klrkpatrlck and Cohen 

parameters 13 and using that  the eigenvalues o:j of interest are smaller than 
terms of order I c / d  2, we obtain f rom Eqs. (2.13) the equations 

0 j ~ a ( l l  ) ~- 0 -[- O ( I / d )  (5 .3a)  
0RI~ 

^ p . 
pj(Rm) = - -~ Tj(R1) + O ( l / d )  (5.3b) 

A o [ A  l -~ojpj~(R,) = 0/~,~ nkBTj(R')  + --m - - p j ( R ' )  

0 . ^ 0 
- uB ?:o(R1) - ?:B (R, )  uo 

p * 02 . 
- g - ~  Tj(Rl)a~z + ~ 0RIBaR1~ pj~(Rl) (5.30) 

^ ~ * ~~ dT~c J~a(RI) OAT 
-cojTj(R1) = - u~ - -  Tj(RI) dz 1 Ogl~ ORla P P 

a2 ,, 
+ D T ORIBaR,B Tj(R,) (5.3d) 

The boundary  conditions that  will be used to solve Eqs. (5.3) are 

. A / 0  0~y /0  ( 4 )  Tj=pjz=OPjx  z 1 =  z 1 = 0  at z l = 0 a n d d  5. 

We  remark that the ordering scheme presented here enables us to consider 
p g / T ,  ( 1 / p ) d T ~ J d z  I , v, and D r in Eqs. (5.3c) and (5.3d) as constants since 
their spatial variations would lead to terms of second order in the small 

parameters.  
To construct  the solutions to the system of equations given by Eqs. 

(5.3) and (5.4), it is convenient  to put  them into dimensionless form. We do 
this by introducing scaled variables, denoted by primes: (5'19~ 

DT , vDTT , 
x a = dx" (xa = Xl, Yl ' Z l ) '  Ua = --d- ua' a T =  ~ - ~  a T ,  

DT t 

(5.5)  

Here P -- v / D  r is the Prandtl  number.  Using then Eqs. (5.5) and (5.1) in 

13 In this connection it should be noted that the parameter A itself has an expansion in powers 
of (R - Rc) 1/2 [cf. Eq. (5.1)]. Since we will eventually calculate eigenvalue corrections of 
O(R - Re), one might think that terms of O(h 2) should be consistently retained. However, 
if this is done, then it can be shown that the additional terms lead to contributions of 
O[(R - Rc)d/Lv], which are small compared to the terms of O[(R - Rc) ] that have been 
kept. 

r J -  d 2 [  " ks  T 1 * ODr ^' " vDr----T *' 
oD ~ n k B T j ( R I ) + T P J ( R ' ) '  PJ~-- -d P/~' T j =  gd3 Tj 
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Eqs. (5.3), the scaled equations are, dropping the primes, 

A 
0R1~ pj~(R~) = 0 + O(l /d)  (5.6a) 

3 2 
+P ~R]:OR]~/~(RI) - e6~, Tj(RI) (5.6b1 

-- oJjTj(RI) = . u a ~ T j ( R I )  --/)ja(Rl) ~ -- R/~2(RI) 

0 2 ^ 
+ 0RI~0RI~ iV:.(RI) 

with 

~ -  (qr2 + a2)2sinTrzl ~,, AT(xl,zl) = - r o=_+1 

(5.6c) 

e ia~ -{- C2 (qT 2 "k" a2)  2 
4 a2sin2~rzl 

(5.7a) 

Uz(Xl,Zl) = e--~-a SlnqT"Z 1 E eia~ (5.7b) 
o=+_I 

. ,/-f 

Ux(Xl,gl)= t'-2-'rgacos~'zl 2 ~176 (5 .7c )  
o = •  

uy(xt,z,) = 0 (5.7d) 

where e -= (24/r)1/2(R/Rc - 1) 1/2. The boundary conditions on Eqs. (5.6) 
are, from Eq. (5.4) 

A A o ~ x  o/~y _ 0 at z ,  = 0 a n d  1 (5 .8 )  
= P " -  ~--S- 0z---~ 

Inserting Eqs. (5.7) into Eqs. (5.6), we obtain a system of linear 
differential equations with coefficients that are independent of Yl and 
periodic in the x 1 coordinate with a period of 2~r/a. Using this and Eq. 
(5.8), we are motivated to look for right eigenfunctions of the form (21) 

^ l " Tj(R1) = ~ 2 eik"'R'"+imax'sin(n~rZl)Tj(n, m) (5.9a) 
r t~0 m=- -oo  

+oo 
1 /~z(RI) = ~ E E eik"'R'"+imaxlsin(n'n'Zl)fijz(n, m) (5.9b) 

n = 0 m = - o o  

" ~  +imaxl ^ /~,=y,x(R1) = ~ eiklt'I~,l cos(mrzl)fij~=y,x(n,m ) (5.9c) 
n=0  rn= --oo 
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To determine the approximate eigenfunctions and eigenvalues of Eqs. (5.6), 
one must first insert the Eqs. (5.9) into Eqs. (5.6), eliminating the "pressure" 

A 

term OFj(R1)/0R]~ by taking the curl of Eq. (5.6b). One then obtains an 
infinite set of coupled algebraic equations for the coefficients Tj(n, m) and 
~(n,m). To decouple and solve these algebraic equations, we assume that 
the eigenfunctions and the eigenvalues can be expanded in powers of 
e~(R/R c - 1) 1/2. With this solution method one can then compute the 
eigenfunctions to O(e) and the eigenvalues to O(e2). This method of 
solution can be found in the literature, where it is used for the determina- 
tion of the critical eigenmode. (19'21) Here it will be employed to determine 
other eigenmodes as well. Since the procedure is rather lengthy, we will 
outline the main steps in Appendix A and give only the results needed for 
the following sections in the main text. 

Apart from a viscous mode, that is identical to that for R < R C [Eqs. 
(3.5a), (3.10a), (3.10b)], there are two eigenmodes with eigenvalues ~oA+ 
-=A• kll ) ( N =  1 ,2 , . . .  ) that are the extensions to R > Rc of those 
with eigenvalues X_+ for R < Re. For A+ for all N and for A_ for N > 2, 
one only needs the eigenvalues to O(e~ They are 

k2{ [ 4~Dr ( R~k~)] ~/2 } 
A(~ kll)=(p+Dr)-~ 1_  1 ( P + D r )  2 1 d4k6 

(5.10a) 

where k 2= k~ + N27r2/d 2. For A_ and N =  1, the critical eigenvalue 

A (1,klE) for kll ~ kll ~ = rr/&/2 is needed to O(c2)~(R/R~- 1) in order 
to ensure a well-behaved description for the correlation functions for 
e-..(R/R~ - 1) 1/2 small but nonzero. One has 

A-(l'k"~k'l~ c~ uDrk2 [ 4 (k'l-k''~)2 ] ' t, + D r 3 k 2 + (R/R~- 1)f(cos0) 
I1~ 

(5.lOb) 

with kff = 37r2/2d 2 and 

1 f(cos 0 ) = 
(1 + O'cosO) 2 

- , , , , o s O : ) ]  

• .coso  + e 5- ocoso  2 

+ 3 ( 1 -  ocoso (5-oeos0 ] (5 10c  

Here 0 is the angle between k and the direction across the rolls, the 2 axis. 
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The corresponding hydrodynamic eigenfunctions to lowest order in e, 
i.e., to O(e~ are given by 

~R(O)/1 ft (1)Oa• t- ,N, klO 

I 1 _ eik"'lll, 2 2 gk~l 1 
2,~ dm 5 k ~ [ 2 A t + ~  ~] 

dlog 5c  sin(Ncrz,/d) flmC21 5 • 
+ flmCl~sin(N~rzl/d ) 

and 

+ tim cos(N~Zl/d) ~ (ky Cly 
dkll 

+ k~C,~)~,(1) 

oL'~ - e-ik,,'R',, [2 2 gk~ 1 ] 
A~ Q,N,k l I ) -  2~r d m 5  k 2 [2A~)(N,k,) (v+ Dr)k z] 

(s 't X in(N~rzl/d ) 2 2 

5 dlogT~ k~ sin(N~rg/d) 
+ 2 dz, k2 [A~)(N,k,) - vk2] C,~ 

(5.1 la) 

1/2 

5 dlogT.~ iN~r (k~C,x + kyCly ) 
2 dz 1 dk 2 

cos(N~rz,/d) } 
• [A(_+O)(N, kll-----~ = v-k 2 ] 

(5.11b) 

We remark that to lowest order in e the eigenfunctions for R ~ R c have the 
same form as the eigenfunctions given by Eq. (3.10) for R < Re. As 
discussed in Section 7(5), this is not anymore true in the next order in e. 
Also, the nonvanishing eigenvalues have the same form for R > R~ and 
R < R~ and it is only the eigenvalue A_ (1,kll) that must be modified to 
take into account the presence of the two-dimensional convection. 
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The completeness relation for these modes is 

1= ~ ~ (dklllfl(1)O~(1,N, kll))(O~(1,N, kll)l (5.12) 
j =  A+_,v  N =  1 . . . .  " 

In the next section Eqs. (5.10), (5.11), and (5.12) will be used to calculate 
the singular correlation functions that exist in a gas when R >~ R C . 

6. EQUAL AND UNEQUAL TIME CORRELATION FUNCTIONS 
FOR R ~> R C 

In this section the results of Section 5 will be used to calculate the 
long-wavelength parts of G2(12) and C(lt[2) to lowest order in e ~  
(R/Rc - 1) 1/2 when R ~> R~. We will follow the procedure given in Section 
4, i.e., first Eqs. (2.1a) and (2.1d) are solved formally and then the 
approximate complete set given by Eq. (5.12) will be used to explicitly 
evaluate these formal solutions. Because the method is identical to that 
given in Section 4, we will be brief. 

We first remark that to lowest order in c we can neglect the term in Eq. 
(2.3d) proportional to Ou,~/ORl~, since u~, O(~), and write the correction to 
the local Maxwellian distribution function as 

dl~ ( [  3mV2 5 )  (6.1) 
fv~l)(1)_ At(1)l ft(1) dz----~ V,~ 2 2 

Using Eq. (6.1), we now evaluate G2(12 ) and C(lt]2) to lowest order in E. 
The formal solutions to Eqs. (2.1a) and (2.1d) for C(lt  12) and G2(12) 

are still given by Eqs. (4.1) and (4.2), respectively. Inserting one set of 
modes, given by Eqs. (5.11) for R ~> R~, into Eq. (4.1) and neglecting the 
viscous mode, which does not contribute to the ddcfs, yields 

c(~ = E E 
o = _ l N = l , . . .  

• exp( - [  A?)(N, k,i ) + 8,,_ 16NIA~2)(N, kll)]t) 

R(O) 
• 1J5(1)o~~ (1, N, kll)) 

L'~ [8(1 - G(~ (6.2) • (OA. (1,N, klt) I 2)f~~ + 

where the superscript (0) denotes that the lowest-order approximation in 
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is taken. Using two sets of modes, given by Eqs. (5.11), in Eq. (4.2) yields 

?j f = N, kH)ft (2)O / (2, M, kll))) G~~ ~ dkll dklllf~(1)O J (l, 
j,i=A+_ 

• [o~j(N, kll ) + wi(M,k;i)]-' 
• ((0~'~ N, kll)O~(~ M, kil) [ 

)< 7~(12)( 1 + P,2) W(R,) W(R2)fd2)fv~O(1))) (6.3) 

From Eqs. (6.1) and (6.3) and a relation almost identical to that given by 
Eq. (4.6), the long wavelength part of G2~~ can be obtained. Using this 
and Eqs. (2.3a), (6.1), and (6.2), the long wavelength part of C(~ ]2) then 
follows. Again, we will not reproduce this result here, but give only the 
singular contributions to the ddcf given by Eq. (4.7). 

Defining the Fourier transform of the ddcf, Moo(N~r/d,N'Tr/d, kll, t), 
by Eq. (4.8) and using Eqs. (2.3a), (5.22), (6.1), (6.2), and (6.3), the ddcf can 
be straightforwardly obtained. The singular contributions occur, when 
N = N' = 1 and Ikltl ~ ktl c and for these wave numbers we find, using that 
A~)(1, kli =~ kilo) ~ (v + Dr)k 2, 

M(~ ]kll I ---- kll,  t) 

= M~~ qr/d, Ikll I --- kll c , t =  O) 

{ [ -vDrk2E>(kli) ] 
1 vk2exp t 

x ( ' + D r ) k ~  ( v + D r )  

+ Z~rk~exp[ - k~(, + DT)t]t 
J 

ok~Tk~o [ dT, c ] 2 1 
+ ( v + D r ) 2 k 6 [ a r ~ )  E>(ktl ) 

{e [ -'Drk2E>(kl.) ] ) 
• xp (v+Dr) t - e x p [ - k 2 ( v + D T ) t  ] (6.4a) 

where 

E>(kll) - 4  (kli-kllc)2 + ( ~ - 1 ) f ( c o s 0 )  
3 k~o 

(6.4b) 
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and 

M~~ Iklll ~ ktl * , t =  0 )  

oEksTXT(7 - 1) OkBTk~ ~ [ dTnc ~2 1 
= ~ + (u +D---~Tk6 ~ar-~-zl ) E>~kll ) (6.4c) 

Equation (6.4c) gives the singular Fourier components of the equal time 
correlation function M(~ R2) and f(cos 0) is given by Eq. (5.10c). Like 
Eqs. (4.11), Eqs. (6.4) have been written in a form valid for all densities, as 
follows from a hydrodynamic rather than a kinetic treatment. 

Comparing Eqs. (4.11) and (6.4), we see that the singular Fourier 
components of the ddcf above and below the instability are identical, to 
lowest order in ~, if one replaces (1 - R/Rc)  below the instability point by 
(R/R~ - 1)f(cos0) above the instability point. Because of this, the remarks 
following Eq. (4.11) for the correlations below the instability point are also 
applicable to Eqs. (6.4). In particular, the singular behavior of Mpp(t = O) 
for kll = kll ~ and R ~ R c, that is ~ [ ( R / R c  - 1)f(cos0)] -1, is again due to 
the contribution of two A_ modes to G 2. 

In the last part of this section the spatial decay of the equal time ddcf 
will be examined. As for R < R c, we are interested only in long-range 
correlations when R ~> Re, so that the first term in Eq. (6.4c) can be 
neglected since it is of short range. The inverse Fourier transform of the 
second term in Eq. (6.4c) will be denoted by D~~ R2) and for R ~> R~ it 
is given by 

2 1 
[ dT~c 2 sin(~rZl/d)sin(Trz2/d) DT(V + Dr )  D~~ R2) --~ pk B T~ o~ r ~ -~ 

kfl d 2 oo 2~r 

exp [ ikllR12xcos O + ikllR12ysin O] 

• [ (k j l -  kilo) 2 + (3~r2/8d2)(R/Rc-  1)f(cosO)] (6.5) 

The asymptotic analysis of Eq. (6.5) for large [R121h i is straightforward for 
two particular cases; case (1) R12y = 0 and R12 x >> d; case (2) R12 x = 0 and 
R12y >> d. Using the method of stationary phase to determine the behavior 
of Eq. (6.5) for IRl21 >> d, the results for these two limits can be written in 
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the form (i = 1,2) 

D(~ / . - = - - / [  dT,~ ~2 d,r 
pp  l 

• sin(~z,/d )sinQrz=/d)d, (R, 2,,) 

where for case (1) 

d, = ( R / R c -  

(6.6a) 

( qr~/3 ( R / R  c -  1),/2} (6.6b) X exp [ - R12 x 

and for case (2) 

dz= ( R / R  ~ - 1)'/2[ R12yf(O)/d,c~]-'/2cos[~rRlzy/d'/2-qr/4] 

{ } •  -R,2y ~ ( R / R  c - 1) '/2 (6.6c) 

In Eqs. (6.6), for gases (P ~ 1), [f(0)] ' /2~ 0.89, while for liquids (P ~ 5), 
[f(0)]~/2~ 0.675. We remark that the correlations along the rolls (i.e., d2) 
have a longer range and larger amplitude than those across the rolls (i.e., 
d 0. The similarity of Do(~ for R ~ Rc and D~p of Eq. (4.14) for R ~ R c 
shows that the fluctuations in the fluid below the instability point already 
favor the rolls that will actually appear in the average state only above the 
instability point. These roils will more explicitly affect the fluctuations for 
R ~> R~ if higher order effects in e are taken into account [cf. Section 7(5), 
Eqs. (7.1)]. 

In the next section, the results of this paper are reviewed and possible 
experimental consequences are discussed. 

7. D I S C U S S I O N  

Here we will discuss in more detail some of the results obtained in the 
previous sections. 

(1) Although we have used in this paper kinetic theory to calculate 
the density-density correlation functions for dilute gases, our final results 
have been quoted for general densities, since we have also derived them on 
the basis of a hydrodynamic theory. (1-4) This hydrodynamic theory, which 
is valid for all fluid densities, can be found in Ref. 1. It involves coupled 
hydrodynamic equations for the time evolution of the correlations between 
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fluctuations of the five conserved quantities 8a~: M~B(R l , R 2, t) ~ (~a~(R 1 , 
t)Sa/~(R2))s s, as well as hydrodynamiclike equations for the long-range part 
of the equal time correlation functions between the 6a~, D~#(RI,R2). ~1~ 
Here the ~a, represent the fluctuations of the microscopic mass, momen- 
tum, and energy densities from their average values in the steady state. ~1) 

The solution of these equations can be straightforwardly related to the 
hydrodynamic eigenvalue problems discussed in Sections 3 and 5, except 
that in this case the thermodynamic quantities and transport coefficients 
that appear are those for a general fluid instead of for a dilute gas. The 
eigenvalue problem can be solved and an approximately complete set of 
hydrodynamic modes can be used to obtain the Mpp(Rl,R2,t ) results, 
quoted in this paper. We remark that the hydrodynamic theory is some- 
what more elaborate and cumbersome than the kinetic theory. However, 
the two theories can be developed formally in close parallel and differ only 
in unimportant technical details. It is therefore not surprising to find a 
rather trivial difference in the final answers between the two theories, 
showing that the kinetic theory for dilute gases contains all the essential 
features also present in a hydrodynamic theory of fluctuations in a dense 
fluid near a convective instability. 

(2) In this paper we have neglected the sound mode contributions to 
both the equal and unequal time correlation functions. To justify this, we 
argue as follows. In a previous paper, (3'4) we showed that when k is small 
and when the walls and gravity are neglected the sound mode contributions 
to the pair correlation function are very much smaller than the other 
hydrodynamic mode contributions. Further, the sound mode contributions 
are not enhanced as R approaches Rc and gravity is included, Therefore, 
we conclude that the sound mode contributions to the light scattering are 
not important near R ~ Re. Similar conclusions have been reached before 
by Lekkerkerker and BoonJ 8) 

(3) We have shown that the time-dependent correlation functions, in 
particular the density-density correlation function, exhibit critical slowing 
down as R approaches R c from above or below. Physically, this is because a 
density fluctuation decays via dissipative processes. However, near R = Rc 
the buoyancy force balances these dissipative forces, so that it takes a 
density fluctuation an extremely long time to decay to zero. 

We have also shown that the equal time correlation functions become 
extremely long ranged as R approaches R~ from below or above. Although 
these correlation functions are already long ranged in a nonequilibrium 
fluid far away from an instability point, ~3'4) their range here is of true 
macroscopic size. Similarly, the length scale of the fluctuations near R~ is 
quite different from that near a gas-liquid critical point. For, while in the 
latter two cases the length scale of the equal time correlations is measured 
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in terms of molecular diameters (i.e., close to the critical point the correla- 
tion length is many molecular diameters), in the case considered in this 
paper these correlations are measured in terms of d (i.e., close to R c the 
correlation length is a large macroscopic distance). 

(4) The theory presented here can--except for the thermal conduc- 
t iv i ty-be  compared with the mean field approximation in critical phenom- 
ena. This follows from the fact that both theories are valid in the neighbor- 
hood of, but away from, the actual instability or critical point. That is, in 
both cases there are important corrections to the theory in the immediate 
vicinity of the singular point. It should be remarked, however, that for the 
B6nard cell, the region near the instability point, where the calculations of 
this paper break down, is an experimentally inaccessible region close to R C 
(cf. Appendix C). The same is not true for the mean field approximation for 
critical phenomena. 

In Table ! we have listed the singular behavior near a gas-liquid 
critical point, in the mean field approximation, for T ~> Tc and that near 
the first convective instability in a B6nard cell for R > Re, as given in this 
paper. We make the following comments on Table I. 

(a) We first remark in general that, as is the case near the critical 
point, the singular behavior (i.e., the critical exponents) above (as quoted in 
Table I) and below the instability point are the same. We also note that an 

Table I. Comparison of Singular Behavior near a Critical and an Instability 
Point 

T~ Rc 

a. Order ( T ) '/2 -~DT( R ) 1/2 
parameter OL -- Oa~Pc ~ -- 1 uz~  --~ -- 1 

b. Pair correlation 
e -R~2/~ l e-  R~2*,y/~',y function 
(R12)l/2 2(u + Dr)  

c. Correlation 
length ~ ~ 1 

( T I T  C _ 1)1/2 ~x,y 

d. Thermal 
conductivity ~ 1 1 1 

U + O T ( T / T  c - 1)1/2 

e. Critical slowing 
down DT= ~ l ( T ) ' / 2 0 c ~  ~ ~ -  1 

(Rl2x,y) 1/2 ( R / R c  - 1)1/2 

1 
(R/R~- 1) ~/2 

1 
2(u + DT) (R /R~  - 1) 1/2 

A_ (k~)~ ~ - 1 
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asymmetric scaling of space is sometimes used (9'22) in the literature and 
that this scaling leads to the conclusion that ~ x ~ ( R / R  c - 1)-1/2 and ( y ~  
( R / R  c - 1) -1/4. This asymmetric scaling in the x and y directions is 
motivated by examining fluctuations or perturbations in the vicinity of the 
wavenumber kll ~ kllc~. The thermal fluctuations considered here, however, 
are not to be restricted to this wavenumber and the results given in Table I 
are obtained from fluctuations where only the magnitude of kll is fixed to 
be in the vicinity of kll c . 

(b) The expression for u z follows directly from Eq. (5.1c). It has been 
experimentally verified both as to amplitude ( D r / d )  and exponent ( 1 / 2 )  
dependence by Berg6 and Dubois. (23) 

(c) In three dimensions, the Ornstein-Zernike behavior of G2(RI, R2) 
in equilibrium is we-R,2/~/R12. We have quoted here the two-dimensional 
result as given by Fisher (24) for the case of large R12 at fixed T > T c. It is 
this behavior which is analogous to that near the instability point in a 
B6nard cell, because the fluid is of finite extent in the z direction. 

For the instability case the importance of mode-coupling has been 
indicated by a factor 1/2  0, + Dr)  and the singular behavior by a factor 
( R / R  c - 1)-i/2. Both come from the contribution of two A modes in the 
expression (6.3) for G2(R1, R2) [cf. Eq. (5.10b)]. 

(d) In the instability case there are really three correlation lengths for 
R ~> R C cf. Eqs. (6.6b), (6.6c): ( z~d ,  ~x = ( 2 d , ~ / ~ r v ~ ) ( R / R c  - 1) -1/2 and 
~y = ~x/[ f (O)l  1/2. 

(e) The importance of mode-coupling in the singular behavior of the 
thermal conductivity h near the critical point is shown by the factor 
1/(~ + D r )  that indicates a contribution to h of a viscous and a heat mode. 
As explained in Appendix B, Eq. (B.7), in the case of the instability, two 
A_ modes, each composed of a viscous and a heat mode, are responsible 
for the singular behavior of h near R = Re. However, as shown in Appen- 
dix C, the coefficient of the expression for h near R = R c given in Table I is 
so small [in fact ~I"  of Eq. (C.6)] that this singularity cannot be observed. 

We note that, although mode-coupling of essentially the same two 
modes is responsible for the singular behavior of the thermal conductivity 
near the critical and the instability point, the origin of the singularity is 
quite different in the two cases. For, near the critical point it is the 
hydrodynamic eigenfunctions that become singular, involving the singular 
behavior of the equilibrium pair correlation function, while near the insta- 
bility point, it is the hydrodynamic eigenvalues, involving the nonequilib- 
rium part of the pair correlation function ~ ( 2 A _  ) -  1, that become singular. 

(f) The critical slowing down near a critical point is determined by 
two singularities: that of c e and that of X. Since h ~ ( T / T ~ -  l) -~/:  and 
c p ~ ( T / T ~  - l) -1, the resulting behavior of D r is ~ ( T / T ~  - l) 1/2. If one 
were to ignore the singularity of h, i.e., in the Van Hove approxima- 
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tion, where the singular behavior of the transport coefficients is neglected 
with respect to that of the thermodynamic quantities, a behavior of 
D r ~ ( T / T  ~ - 1) would be found, analogous to that near the instability. 
Cummins et al. (2s~ have recently observed that critical slowing down of 
h (k~ = ~r/d, kll ~ kll;) for R < R~ by a forced Rayleigh scattering tech- 
nique. Similarly, the critical slowing down for R > R~, i.e., the vanishing of 
A_ (N = 1, kll ~ kll~), could be observed. 

(5) In Section 6 we computed the equal time density-density correla- 
tion function for R > R~ to lowest order in the expansion parameter 
E ~ [ R / R  c - 1] 1/2. There it was shown that the correlations are of longer 
range and have a larger amplitude along than across the rolls. If the 
perturbation expansion is continued, then in the next order of E we find 
that although the correlation function along the axis of the rolls, for fixed z, 
still has essentially the same form as before, the correlation function across 
the rolls contains additional structure that indicates more explicitly the 
presence of two-dimensional motion of the fluid in rolls. Denoting the 
corrections of O(e) to Do(~ [cf. Eq. (6.6a)] by D (l)pp , the explicit results that 
we have obtained are that 

D(1)( R12 x > d, Rl2y .~- O, Z1, Z 2 ,X l ,X2) 

-- - P k e r  [ a  dT~c 2 d 
- D r ( P  + DT ) ~ r dz,  ) 1--~2 ( - 

2 )1/2 

vrkllcR12x 

X ( s i n ( ~ z 2 / d ) s i n ( 2 ~ z , / d ) c o s [ k ~ l ~ ( R 1 2  x + x , )  - ~/4]  

+ s i n ( ~ l / d ) s i n ( 2 ~ d d ) c o s [  KH~(R~2x - x : )  - ~/4]  } 

x e x p [ - R 1 2 x @ d ( R / R r  1/2 ] 

and 

D ( 1 ) t o  =O, R12y>>d, Zl Z 2 , X _ ~ X I _ ~ X 2 )  pp ~/t't 12x 

(7.1a) 

- p k . r  t d (S0+9/P)  F 2 11/: 

J 
X c o s ( k l l x ) ( s i n ( ~ r z a / d ) s i n ( 2 ~ r z l / d  ) + s i n ( v r z l / d ) s i n ( 2 v r z 2 / d ) )  

• cos[ kHcR,2 " - ~r/4 ] e x p { -  R,2y ~d [6f(0)] l /2(R/~ c -- l) 1'2 } 

(7.1b) 

We note that unlike Do(~ D (1)pp is not singular as ( R / R  c - 1)--~ 0. Further, if 
Eqs. (7.1a) and (7.1b) are expressed in center-of-mass and relative coordi- 
nates and if we fix the center-of-mass position, and examine D~ ) as a 
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function of lll2L, then Eq. (7.1 a) is seen to oscillate faster than Eq. (7. l b) due 
to the presence of the rolls, as manifested in the f a c t o r s  cos[kllc(Rl2 x "l- 
xl) - 7r/41 and cos[ktl~(Rx2 x - x2) - ~/4].  

(6) Also of experimental interest are the momentum-momentum, or 
velocity-velocity correlation functions 14 defined by (i, y = x, y, z) 

(r = Mpipj(Rt ,R2, t ) =  mZf dVl f dV2V, iVS(ltl2) 
(7.2) 

Since the calculation of Mp, g(l i ] ,R2, t)  is almost identical to the calcula- 
tions of Moo(R 1, R 2, t) given in Section 4 for R < R C and in Section 6 for 
R ~> R c, we will give only the results of these calculations. For i, j = x, y 
we define the Fourier transform of Mp,~(R1,R2, t) [--Mp,6(kz,k'z,kll, t)] 
by Eq. (4.8a) with the subscripts O0 replaced by the subscripts PiPj and 
sin(kzZl)sin(k'z2) replaced by cos(k~zOcos(k;z2). If we restrict ourselves to 
the case where R --- Rc, kll -~ kii c, and k~ = k" -- ~r/d, then for R ~< R C we 
obtain 

i ,j(k  = k" = t)  

[ Sixky - ~iy kx ] I ~jxky - 8Jy kx ]ok. T exp[ - vk2t ] 

k~ 

kikj (-~) O k B T {  DT exp[ k~vDrE<(kl')t I -  

kit k ;  

3 

(7.3) 

In giving Eq. (7.4), we have retained only the most important contributions 
for R ~ Rc for each of the modes v, ~+, and 2~_. We remark that for 
R < R~ a more general expression that is valid away from the instability 
point can be easily derived by using the techniques of Section 4. If i, j = z 
and if we define Me~e~(k~,k'~,kll, t) by Eq. (4.8a) with pp replaced by P~Pz 
then for Mp~e~(k ~ = k'~ = ~r/d, kll ~ kll ~ , t) we obtain Eq. (7.4) with 

2 2 2 2 2 2 kllo/k~. Finally, for R > R~ these correlation kikj~r / kll kcd replaced by 
functions are given by the same equations except that E< (kll) is replaced 
by E>(kl)  [cf. Eq. (6.4b)]. The spatial dependence of these correlation 
functions can be determined in a similar way as was done in the Sections 4 

x4 We are indebted for Professors H. L. Swinney and C. Oberman for pointing out to us that 

these correlation functions could be measured by laser Doppler velocimetry. 
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and 6 for Moo, using Eq. (4.8b) and leads to similar results [cf. Eqs. (4.14) 
and (6.6)]. 

(7) It would be interesting if the singular contributions to the densi- 
ty-density or the momentum-momentum correlation functions could be 
directly experimentally detected above or below the convective instability. 
We remark, however, that in order for the critical mode to be probed, the 
wave number k must be on the order of ~/d .  If visible light is used to 
probe such fluctuations, then light scattering techniques at very small 
angles are required. In fact, if d --- 0.1 cm then the scattering angle must be 
on the order of 10 -3 radians. Therefore, as has been remarked before, (8) 
direct measurement of the density-density correlation functions seems very 
difficult with visible light. Although indirect measurements of the singular 
behavior near R = R c have been reported, (26) it seems to us that a direct 
measurement, using electromagnetic waves in the microwave regime, would 
be of considerable interest. 

APPENDIX A: THE E IGENMODES FOR R ~ R c 

In this appendix, we sketch how the A_+ eigenmodes of Eqs. (5.6) with 
the ansatz (5.9) can be determined. 

Inserting Eqs. (5.9) into Eq. (5.6a) and neglecting terms of O(l /d) ,  we 
obtain the relation 

mrl~z(n,m ) + ikyfijy(n,m) + i(k  x + ma)~.~(n,m) = 0 (A.la) 

To the order that the correlation functions, G2(12 ) and C( l t [2) ,  will be 
calculated we will not need the extension of the viscous mode, p, to R ~> Re. 
To compute the extension of the ~_+ modes to R ~> R c, we use that for these 
modes there is zero vorticity in the z direction, i.e., we require 

i (k  x + ma)~jy(n, m)=  iky~jx(n, m) (A.lb) 

From Eqs. (A.lb) and (A.la) we can express/~x and/~y in terms of/~z as 

n~i ( kx + ma ) 
~.x(n,m) = [ k~ + (k x + ma) 2] fijz(n,m) (A.lc) 

mriky 
fijy(n,m) = [ k~ + (k x + ma) 2] PJz(n'm) (A.ld) 

where j is the eigenfunction index for the extension of the X• modes to 
R ~> Re. Next the algebraic equations resulting from Eq. (5.6c) will be 
given. 

Inserting Eqs. (5.9) into Eq. (5.6c), we straightforwardly obtain the 
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^ 

following equations for the Tj(n, m) 

oJj~(n ,m)  - [ R c + ( R  - R~ ) ]l~.~(n,m ) 

- [  k~ + (k  x + ma)2+ n2~r2]Tj(n,m) 

4 ~ '  ~ ~ - o ' )T j (n  - o ' ,m - o) 
o = + 1  o'=+_1 

- oa [  k x + a ( m  - ,  o ) ]  T j ( n  - o ' , m  - o) 

q72 + 2 ^ --  O) -- a )pjz(n - o ' ,m 

s ^ ^ 
+ 4 (~2 + a2)2a2[• (n  _ 2, m) +pjz (n  + 2, m) - p j z ( 2  - n ,m)]  

(A.2) 

with/~2 (s, m) = 0 for s < 1. We remark that in giving Eq. (A.2) we have 
written R = R c + (R  - Re) to facilitate an ordering scheme in powers of 
r  c - 1) 1/2 that will be given later. Further, it is clear from Eq. (A.2) 
that the coupling between the expansion coefficients with labels (n, m) to 
expansion coefficients with other labels is proportional to ~. This fact will 
enable us to solve these equations perturbatively in powers of E. Next the 
algebraic equations that result from Eq. (5.6b) with Eq. (5.9) will be given. 

To simplify the algebra, it is convenient to define the differential 
operator (19) 

92 22 (A.3a) 
8,~ -- OR]~ORlz 6~z OR~BORIB 

This operator has the properties 

ORI~ 

and 

- 0 (A.3b) 

^ 0 0 /~a (R1) 
d a f l j a ( R l ) -  ORlz ORla 

~2 ^ 

OR1#ORIB PJ z ( R l )  

0 2 ^ 
ORIBORI~ P) z(Rl) (A,3c) 
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Multiplying Eq. (5.6b) by 6 4, using Eqs. (5.9) and (A.3), and performing 
straightforward but lengthy algebra the resulting equations from Eq. (5.6b) 
are 

--o~j[ k 2 + (k~ + ma)  2 + n2$r2]fijz(n,m ) 

2 2 2 *  + P [ k  2 + ( k  x + ma)  2 + n ~r ] p j z (n ,m)  

2 * + P[ k2y + ( k  x + too) ]Tj(n,m) 

- -  _ _  e f t  

4 

x s  s 
o =  "+ l o'=+l 

ma) 2 ] 

A ,] • ~(n - o ' ,m  - a) + iaaa' 

+ oa(k~ + ma)[~r2no'~.~(n - o ' ,m  - o) 

+ iaoTrnl~x(n -- o ' ,m  -- o) ] 

+ [ k f  + ( k x  + ma)  2] 

X [a'(n - a ' ) a 2 f i j z ( n - a ' , m  - o) 

- o a ( k ; ,  + ma - o a ) f i j z ( n -  o ' ,m  - o) ] 

- a ' a Z r m ( n  - a ' ) i[  kyfijy(n - a ' , m  - o) 

+ ( k  x + ma)~.x(n  - a ' ,m  - a)] 

+ naa~r(kx + ma - aa) i  

X [ kyfijy(n - a ' , m  - a) 

+ ( k  x + ma)fi jx(n - o ' ,m  - o)]} (A.4) 
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Equations (A.1), (A;2), (A.3), and (A.4) form a set of coupled equations 
for ~.~(n,m) and Tj(n,m) that will now be solved for small values of 
e ~ ( R / R ~  - 1) 1/2. 

The first step in solving these equations is to assume the expansions 

63j--'~ ~0(0)q " E ' ~ ( 1 ) +  C'263(2) + " ' "  

~ ( n , m )  = 7"j(~ + e'Tj(1)(n,m) + "-" (A.5) 

fij~(n,m) = fij~)(n,m) + e'fij(2)(n,m) + . . .  

where e' is a formal expansion parameter that characterizes the order of 
magnitude in e of the terms on the right-hand side of Eq. (A.5) but is set 
equal to 1 at the end of the calculation. Inserting Eq. (A.5) into Eqs. (A.2) 
and (A.4), the resulting equations to O(e ~ are 

~o)~176 R~j~)(n,m) - [  k 2 + (k x + ma) 2 + n2rz2]~.(~ = 0 

(A.6a) 

and 

- , '[  k; + + 2 + 

"[  § + ma 21 
- = 0 (A.6b) 

[ k~ + (k~ + rna)2 + n2vr 2 ] 

Equations (A.6) have two solutions, viz., either/~(~ = 0 = ~.;~ 
or  

(eo~~ I k~ + + ma) 2 + - k 2 + (k x + ma) 2 + n27r2] 2 (G //2~T2 1 P[ 

P R J  k 2 + (k~ + ma'~ 2 ] 1 
_ L y t / j 

To proceed, we first remark that when ~ = 0 it is clear that/~z(n,m ~ 0) = 0 
A 

= Ty(n, m ~ 0), since the rolls have not yet formed. From this we can then 
define our perturbation expansion by fixing ~ ) ( n ,  0) and Tj~~ 0) to be 
nonzero for some value of n, say N, and requiring all other pj~)'s and Tj~~ 
to be zero. In this way ~o) can be determined from Eq. (A.7). Thus, we 
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choose 

/~7)(N, O) :r ~ ~.i~ O) (A.8a) 

)~)(n,m) = 0 = Tj(~ for all other (n,m). 
From Eq. (A.7) with n = N, m = 0 we obtain 

A(_+O)(N, k0 

( I + P )  
- 2 N2 2) 

R~k~ 
4P 1 (A.8b) 

• 1 _ 1 (1 + p)2 (k~ + n2'i'r2) 3 

where A_+ (N, kll ) denotes those eigenvalues that are the extensions of ?~_+ to 
R > R C. From Eqs. (A.1),^(A.6), and (A.8a), we can obtain the expansion 
coefficients/~,(N, 0) and Tj(N, 0) to O(~ ~ with the results 

~ ( N ,  0, kll ) = AA_ ~ (N:kll) 

f.(o) t N RcAA+ (N, kll ) 
A.~, ,0, kl,) = [AO,(N, kII) :  (k~ + U2r 

(A.8c) 

p  /N,0,k0 = AA (N, 0 ,_- z 
-* kit 

ik x 
~<o, /N 0, kll ) -- A A+ (N, k,/) ~ N~" FA._xl, , 

where AA_ * (N, kH) is a normalizing factor that will be determined later. 
From Eqs. (A.8), (5.9), (5.5), (5.3b), and (2.11) the unnormalized modes can 
be easily determined to O(e~ We remark, however, that for N = 1 and 
krl - kHc = ~/~-A(._ ~ goes to zero, that is 

4P - k 2 A~)(I '  kll-~ k/l~ - 1 + P (kll IIc) (A.9) 

Although A(~ for N > 1 and A(+ ~ for all N are greater than zero so that 
they lead to contributions to C ( l t l 2  ) and G2(12 ) that are well behaved, 15 
this is not true for A(~ ktl--- kite). Because of this we have to continue 

15 In Section 3, and elsewhere, O-4) we showed that the long-wavelength contributions to 
G2(12 ) are inversely proportional to the hydrodynamic eigenvalues. From this follows 
immediately that if one of these eigenvalues goes to zero, G2(12 ) is not well behaved. 
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with the perturbation expansion so that a well-behaved description of the 
correlation functions for e small but not equal to zero is obtained. 

This procedure is straightforward, and since similar calculations can be 
found in the literature, (20 we quote only the relevant results here. For a 
general N and kll the first-order eigenvalues vanish, i.e., 

A~)(N, kll ) = 0 (A.10a) 

For r v ~ 0 a positive definite correction to Eq. (A.9) is given in second-order 
perturbation theory in c by 

A(_2)(N = 1, kll = ~r/(2-, cos0 ) 

(2~2 (1 -~ GCOS0) 2 

- 16(1 + P)  ,,--~_+1 [(5 - ocos0) 3 -  27/4(1 - cos0)] 

• (97r2/2(1 - ocos0) + PTr2(5 - crcos0) 2 

+ 3 ( 1 -  ocos0)[ 3~r2 --~-- + -ff (5 r - o c o s 0 ) ]  } (A.10b) 

The unnormalized right hydrodynamic eigenfunctions that are of interest to 
us can then be found from Eqs. (A.8), (5.9), (5.5), (5.3b), and (2.1). To 
lowest order in lid and r they are 

eik,,'Rq, AA• (N, kFI) 
ft (1)~)'~7) (1' N' kll) - 2~r m 0,(1) 

(dlogTnc sin(N~rzl/d) ( flmC? 5)  
X d z  1 [ A(_+~ kll---) - D----rk 2 ] 2 2 

+ tim sin(N~rzl/d)Clz 

tim cos(Ncrz,/d) ~ll [ kyC,y kxClx] t + 

(A. 1 l a) 

where k 2 -- k~ + N2qr2/ d 2. The hydrodynamic eigenvalues to O(e ~ are 

k 2 { [  4vDr ( R~k~)] 1/2} 
A~)(N, kll ) = ( p + D  r)--~ 1 +- 1 (v+ D r )2 1 d4k6 

(A.11b) 
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Further, if N = 1, the critical eigenvalue A_ (1, kll ) near k H ~ kll~ is given to 
O(e2)~(R/R~ - 1) by 

VDT k2 4 (k i t -  krJ~) 2 
A - ( l ' k l l ~ k r l c ' c ~  Dr)  3 k~ + 

(A.11c) 

with k~ = 3~z2/2d 2 and f(cos0) given by Eq. (5.10c). 
To determine the normalizing factors AA_ + in Eq. (A.11a) and to 

complete the calculation of the hydrodynamic modes for R ~ Re, the 
adjoint eigenfunctions OJ~(1) are needed. The hydrodynamic equations for 
the left eigenvatue problem when R ~> R+ are given by Eq. (2.20) with 
n = nn~ + Ao/m, T = Tnc + AT and u given by Eq. (5.1). This eigenvalue 
problem can be solved in a manner analogous to that used to determine the 
right eigenfunctions. Using the results obtained for the left eigenfunctions 
and the normalization condition 

(OL(1,N, kll)fl(1)O/R(1,M, kil)) = (|176 N, kll)fl(1)O~~ kil)) 

= • i j 6 x m 6 ( k l l -  kll ) (A.12) 

where i, j = A_+. The normalized right and left hydrodynamic eigenmodes 
can then be found to lowest order in e. They are given by the Eqs. (5.11) in 
the text. 

APPENDIX B: SINGULAR CONTRIBUTIONS TO THE HEAT FLUX 
FOR R ~ R~ 

In this appendix, we use kinetic theory to calculate mode-coupling 
contributions to the heat flux in the dilute gas when R ~ R c. These 
contributions are corrections to the Boltzmann value of the heat flux Jsz in 
the z direction, 

= - x  d T  (B.I) 

where h e is the low density (Boltzmann) value of the thermal conductivity. 
We will outline the theory for R ~ Re and only quote the results for 

The mode-coupling contributions to the thermodynamic fluxes are duc 
to the nonequilibrium pair correlation function, G2(12 ), calculated in Sec- 
tion 4 for R < R C. If G2(12 ) is retained in the first equation of the BBGKY 
hierarchy, (3'15'2~ then the resulting kinetic equation for the one-particle 
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distribution function in a steady state is 

v,.  ~ + g. ~ f,(l/ 

=fe2~oz)Ez,(1)f~(2 ) + G2(12)] + f~(1)/l(1) (B.2) 

In order to obtain a closed equation for fl(1), we need an expression 
for G2(12 ) in terms offl(1 ). To O(/z), we can use Eq. (4.2) for G2(12), which 
involves fv (1), and obtain a closed equation for fv~ This leads with Eq. 
(2.3) to an expression for f~(1). This then implies that for the computation 
of the heat flux we use the same expression for G2(12 ) that led to the 
singular equal time correlation functions near R ~ R c. Using Eqs. (2.3a) 
and (4.2) in Eq. (B.2), the resulting equation for f(v0(1) is (15) 

(v,. ~71 + g. g V - 7 , a  0 } W(R,)f~(1)- W(R,)fd2 2ff(12)(1 + Pl2)fl(2)fv( O(1) 

- Tw(1)[ ft(1)  + fv~l)(1) ] 

= fd2/'(12) 1 
[L~(1) + L~S(2 ) - Tw(1 ) - Tw(2)] 

• 7~(12)(1 + P12)W(R,)W(R2)fl(2)f(v')(1) (B.3) 

Equation (B.3) for fv(1)(1) takes into account uncorrelated sequences of 
binary collisions on the left-hand side as given by the Boltzmann equation 
and a correction to this, viz., a set of correlated binary collisions--called 
ring events--on the right-hand side. (15'2~ 

From Eq. (B.3), the heat flux in the z direction can be determined. The 
result to O(/*) is (ms)  

J~ = kB dVl Vlz 2 2 

B dz, ,.] ~ 2 2 ] 1 (j d2 ~(12) 
a,(1) 

1 N 
[Lss(1) + Ls~(2)- L (1 ) -  L(a)] 

1 
• T(12)(1 + P,2)W(R1)W(R2)fl(2 ) St( l )  

d l o g T  ( flmV21 5) )t dT 
• ~ j~(1)V,z 2 2 -= - Bd~z 1 +JzR (B.4) 

with R 1 inside the fluid volume and J~R the ring contribution to J~. 
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Using the hydrodynamic modes given by Eq. (3.10), it is straightfor- 
ward to obtain the long-wavelength contribution of the ring collision events 
to J~R. Denoting this long-wavelength or hydrodynamic contribution to Jzn 
as J ~ ,  we find 

5 kB kBT 2 
J ~  (Zl) = 2 m (p + D T) d ~ sin2(k~z]) 

k~ 

(- dkll k~ 1 dT • (8.5) 
3 (2~) 2 (k~ + k~) 2 [ 1 -  R(gz,~0/Rc] dz, 

The singular part of J ~  as R ~ R~ is due to the k~ = ~r/d (n = 1) contribu- 
tion in Eq. (B.5). Denoting this singular contribution as J ~  yields 

. ,  5 k~ k~r dr_~ 
JzR (zl) = 2 m (p + D r )  dz I sin2(~rz l /  d ) 

o~ dkji k~ 1 
X fo 2 ~r 

(k~ + k~) 2 [(1 - R/Rc)  + (4 /3 ) (k l l -  kllo)2/kl~] 

(B.6) 

where in giving Eq. (B.6) we have used Eq. (4.10a) which is valid approxi- 
mation as long as R is close to R~. Using that the integrand in Eq. (B.6) is 
sharply peaked around kll ~ kll, J~(z])  is easily found to be given to 
leading order in (1 - R/R~) by 

cp kBT 2 sin2(~rZl/d) 1 1 dT 
J~'(z l)  = Q' + D r )  12,f3- [1 - R/R~] 1/2 dzl 

(B.7) 

with c e = 5kB/2m the specific heat at constant pressure for an ideal gas. In 
this form Eq. (B.7) is valid for all densities as can be verified by using a 
hydrodynamic theory. From Eq. (B.7) follows immediately that there is a 
contribution ?t~ to the thermal conductivity )t, due to ring events, that reads 

X~ = CpkB T 2  sin2(~z~/d) 1 1 (B.8) 

(,,+D~) 12~ [1-R/Rc] '/~ 
and is singular for R = R~. 

A similar calculation for R > R~ leads to the same equation for )t~ 
except that (1 - R/Rc) 1/2 is replaced by 

(R/Rc-1)l/2((~O2VrdO/[f(cosO)]l/2)/27T}-l~-(R/Rc-l) 1/2 ( B . 9 )  

where f (cos0)  is defined by Eq. (5.10c). 
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APPENDIX C: RENORMALIZATION OF THE 
CRITICAL EIGENVALUE 

The singular ring contribution to the heat flux discussed in Appendix 
B modifies the hydrodynamic eigenvalues, since the temperature field that 
should actually be used in the solution of the eigenvalue problem is not 
determined by Eq. (3.1 c) but instead by an equation that takes into account 
the ring contribution to the heat flux as well. From Eq. (B.4) it follows that 
this improved equation is 

d )tB(T) aT d@ 1 dz 1 ~ 4- JzR(ZI) = 0 (C. 1) 

We remark that in determining j H S ( z l )  , a s  given by Eq. (B.7), it was 
assumed that T(zl) was determined by Eq. (3.1c). Because of this J~" is 
only the first term in an expansion of the true value of the heat flux in 
terms of ring collision events. 

To solve Eq. (C.1) for the temperature field T(Zl), we formally expand 
T(Zl) in powers of ring collision events: 

T(zI) = TB(ZX) + 8T,(z,) + 82T2(Zl) + " ' "  (C.2) 

Here 8 is a formal expansion parameter that only characterizes the order of 
magnitude of the terms on the right-hand side of Eq. (C.2) and that is set 
equal to 1 at the end of the calculation, while TB(Zl) is the Boltzmann value 
of T(zl) as determined by Eq. (3.1c). Later 3 will be identified with a 
physical expansion parameter that is small everywhere except in the ex- 
treme vicinity of R -- R~. We now determine T(zl) to 0(8). 

Inserting Eq. (C.2) into Eq. (C.1), we obtain Eq. (3.1c) to 0(80). 
Further, retaining only the singular part of Jzn, given by Eq. (B.7) to O(8), 
Eq. (C.I) to 0(3)  is 

d 2 
dz~ ()tB[ TB]Tl(Zl)) 

_ d Cl, kBTB 2 sin2(rrz,/d) 
dg 1 (P+ DT) d 

1 dr,, 
1 2 , f i ( 1  - R/Rc)  1/2 dZl (C.3) 

Neglecting the spatial variations of the hydrodynamic quantities on the 
right-hand side of Eq. (C.3), since they lead to corrections of O(d/Lv), Eq. 
(C.3) can be straightforwardly solved with the result 

4~ 2 kB Ts 1 1 dTB 
Tl(z) = sin(2~rzl/d)-d PDr(v + Dr) 12~- (1 - R / R  c)1/2 dz 1 

(c.4) 
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where we have used that TB(z 0 satisfies the boundary conditions at z 1 = 0 
and d, so that Tl(z 1 = 0, d) = 0. To determine the modified hydrodynamic 
eigenvalues to O(~), we need d[T~(z]) + Tl(zO]/dz I . From Eqs. (C.2) and 
(C.4) we obtain (again neglecting corrections of O(d/Lv)  ) 

dz I [TB(Zl) -'1- Tl(z]) ] = [1 + 

with 

F cos(2crz]/d) 1 dTs 
( 1  - R/Rc)  1/2 

(c.5) 

F = k B T 
(C.6) 

dpDT(V + Dr)12~/3- 

For a gas at STP with d~0.1 cm, F ~ 1 0  -8 which is the small quantity 
related to ~ that was mentioned earlier. 

To estimate the effect of this correction to dTB/dZ 1 on the eigenvalue 
problem, we replace dT/dz  I = dTB/dZ l on the right-hand side of Eq. 
(3.3d) by Eq. (C.5) and calculate the modifications to the eigenvalue 
~t  (k z = ~r/d, kll)} 6 The resulting eigenvalue problem can be solved with- 
out difficulty near R ~ R~ and kll ~ kll c by expanding in powers of F. The 
critical eigenvalue is then 

2t R_ ( k~ = ~r / d, kll ~ kilo) 

- [ 4(kl' - kl'c)2 J 
k[vDr (1 - R/R~)  + F + 

(v + Dr)  2(1 - R/R~)  '/2 -3kf 

(C.7) 

where X _R denotes the renormalized value of X_ due to the contribution of 
the ring collision events to Jz. From Eq. (C.7) it follows that the terms ~ F  
become important when ( 1 -  R / R c ) ~ F / 2 ( 1 -  R / R J / 2  or ( 1 -  R/R~) 
~<F 2/3. Since F ~ 1 0  -8, the mode-coupling or ring corrections to X are 
significant only when ( 1 -  R/Rc)~IO -6. Therefore, unless one is ex- 
tremely close to the instability point, corrections to the theory presented 
here are completely insignificant. This means, in the language used in 
critical phenomena, that a mean field theory of the instability is adequate 
for all practical purposes. This has been argued before by Graham (9) and 
others (]0,1l) on the basis of fluctuating nonlinear hydrodynamics. 

16 When this ring contribution to the temperature field is included in the kinetic eigenvalue 
problem, then the basic kinetic streaming operator Lss(l), defined in Section 2, should, for 
consistency, be modified to include ring collision events. However, one finds that this 
modification of Lss(1 ) leads to corrections of O(d/Lv) to the results obtained in Appen- 
dix C. 
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In the last part of the appendix, we argue that the assumption of a 
fluid with infinite horizontal extent is not realistic for (1 - R/Rc)~ 10 - 6 .  

From Eq. (4.14) it follows that a correlation length in the horizontal 
plane, 4, can be defined 

d 
f3- ~r(1 - R/Re) 1/2 (C.8) 

Now in an actual experiment a measure of the influence of the 
horizontal boundaries is the aspect ratio a -- L/d, where L is the linear 
dimension of the fluid in the horizontal direction. Typically, the largest 
aspect ratios used experimentally are a ~ 5 0 .  Since for (1 - R/Rc)~IO -6, 
~/d.~lO 3, it follows that the correlation length in the horizontal plane is 
very much larger than the size of the system, so that the presence of 
horizontal boundaries can no longer be neglected, as was done in all our 
calculations here. 
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